429 research outputs found

    Last Chance in Europe

    Get PDF

    A molecular tool to identify <i>Anastatus</i> parasitoids of the brown marmorated stink bug

    Get PDF
    Globally, Anastatus species (Hymenoptera: Eupelmidae) are associated with the invasive agricultural pest Halyomorpha halys (Stal) (Hemiptera: Pentatomidae). In Europe, the polyphagous Anastatus bifasciatus (Geoffroy) is the most prevalent native egg parasitoid on H. halys eggs and is currently being tested as a candidate for augmentative biological control. Anastatus bifasciatus frequently displays behavior without oviposition, and induces additional host mortality through oviposition damage and host feeding that is not measured with offspring emergence. This exacerbates accurate assessment of parasitism and host impact, which is crucial for efficacy evaluation as well as for pre- and post-release risk assessment. To address this, a general Anastatus primer set amplifying a 318-bp fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed. When challenged with DNA of three Anastatus species -A. bifasciatus, Anastatus japonicus Ashmead, and Anastatus sp.-, five scelionid parasitoid species that might be encountered in the same host environments and 11 pentatomid host species, only Anastatus DNA was successfully amplified. When applied to eggs of the target host, H. halys, and an exemplary non-target host, Dendrolimus pini L. (Lepidoptera: Lasiocampidae), subjected to host feeding, no Anastatus amplicons were produced. Eggs of the two host species containing A. bifasciatus parasitoid stages, from 1-h-old eggs to pupae, and emerged eggs yielded Anastatus fragments. Confirmation of parasitoid presence with dissections and subsequent PCRs with the developed primer pair resulted in 95% success for 1-h-old parasitoid eggs. For both host species, field-exposed sentinel emerged eggs stored dry for 6 months, 100% of the specimens produced Anastatus amplicons. This DNA-based screening method can be used in combination with conventional methods to better interpret host-parasitoid and parasitoid-parasitoid interactions. It will help address ecological questions related to an environmentally friendly approach for the control of H. halys in invaded areas

    Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene

    Get PDF
    The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC), and the USA (US NSF, Office of Polar Programs). Long-term support of ice core research at the University of Bern by SNF is gratefully acknowledged

    Fingerprinting of chlorinated paraffins and their transformation products in plastic consumer products

    Full text link
    Chlorinated paraffins (CPs) can be classified according to their length as short-chain (SC, C10-C13), medium-chain (MC, C14-C17) and long-chain (LC, C ≥ 18) CPs. Technical CP-mixtures can contain a wide range of carbon- (C-, nC = 10-30) and chlorine- (Cl-, nCl = 3-19) homologues. CPs are high-production volume chemicals (>106 t/y). They are used as flame-retardants, plasticizers and coolant fluids. Due to the persistence, bioaccumulation, long-range environmental transport potential and adverse effects, SCCPs are regulated as persistent organic pollutants (POPs) by the Stockholm Convention. Transformation of CPs can lead to the formation of unsaturated compounds such as chlorinated mono- (CO), di- (CdiO) and tri-olefins (CtriO). Such transformation reactions can occur at different stages of CP manipulation providing characteristic C-/Cl-homologue distributions. All this results in unique patterns that collectively create a fingerprint, which can be distinguished from CP-containing samples. Therefore, CP-fingerprinting can develop into a promising tool for future source apportionment studies and with it, the reduction of environmental burden of CPs and hazards to humans. Herein, CP-containing plastics were studied to establish fingerprints and develop this method. We analyzed four household items by reverse-phase liquid-chromatography coupled with a mass spectrometer with an atmospheric pressure chemical ionization source and an Orbitrap mass analyzer (RP-LC-APCI-Orbitrap-MS) operated at a resolution of 120000 (FWHM at m/z 200). MS-data of different CP-, CO-, CdiO- and CtriO-homologues were efficiently processed with an R-based automatic mass spectra evaluation routine (RASER). From the 16720 ions searched for, up to 4300 ions per sample were assigned to 340 C-/Cl-homologues of CPs and their transformation products. Specific fingerprints were deduced from the C-/Cl-homologues distributions, the carbon- (nC) and chlorine- (nCl) numbers and saturation degree. These fingerprints were compared with the ones obtained by a GC-ECNI-Orbitrap-MS method

    A North Atlantic tephrostratigraphical framework for 130-60 ka b2k:new tephra discoveries, marine-based correlations, and future challenges

    Get PDF
    Building chronological frameworks for proxy sequences spanning 130–60 ka b2k is plagued by difficulties and uncertainties. Recent developments in the North Atlantic region, however, affirm the potential offered by tephrochronology and specifically the search for cryptotephra. Here we review the potential offered by tephrostratigraphy for sequences spanning 130–60 ka b2k. We combine newly identified cryptotephra deposits from the NGRIP ice-core and a marine core from the Iceland Basin with previously published data from the ice and marine realms to construct the first tephrostratigraphical framework for this time-interval. Forty-three tephra or cryptotephra deposits are incorporated into this framework; twenty three tephra deposits are found in the Greenland ice-cores, including nine new NGRIP tephras, and twenty separate deposits are preserved in various North Atlantic marine sequences. Major, minor and trace element results are presented for the new NGRIP horizons together with age estimates based on their position within the ice-core record. Basaltic tephras of Icelandic origin dominate the framework with only eight tephras of rhyolitic composition found. New results from marine core MD99-2253 also illustrate some of the complexities and challenges of assessing the depositional integrity of marine cryptotephra deposits. Tephra-based correlations in the marine environment provide independent tie-points for this time-interval and highlight the potential of widening the application of tephrochronology. Further investigations, however, are required, that combine robust geochemical fingerprinting and a rigorous assessment of tephra depositional processes, in order to trace coeval events between the two depositional realms

    Decadal-scale progression of the onset of Dansgaard–Oeschger warming events

    Get PDF
    During the last glacial period, proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard–Oeschger (DO) events. A range of different mechanisms has been proposed that can produce similar warming in model experiments; however, the progression and ultimate trigger of the events are still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the limited temporal resolution achievable in many archives and cross-dating uncertainties between records. Here, we use new high-resolution multi-proxy records of sea-salt (derived from sea spray and sea ice over the North Atlantic) and terrestrial (derived from the central Asian deserts) aerosol concentrations over the period 10–60&thinsp;ka from the North Greenland Ice Core Project (NGRIP) and North Greenland Eemian Ice Drilling (NEEM) ice cores in conjunction with local precipitation and temperature proxies from the NGRIP ice core to investigate the progression of environmental changes at the onset of the warming events at annual to multi-annual resolution. Our results show on average a small lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature of approximately one decade. This suggests that, connected to the reinvigoration of the Atlantic meridional overturning circulation and the warming in the North Atlantic, both synoptic and hemispheric atmospheric circulation changes at the onset of the DO warming, affecting both the moisture transport to Greenland and the Asian monsoon systems. Taken at face value, this suggests that a collapse of the sea-ice cover may not have been the initial trigger for the DO warming.</p

    Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages.

    Get PDF
    Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction. © 2007 Springer Science+Business Media B.V

    &quot;EDML1&quot;: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years.

    Get PDF
    A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via &lt;sup&gt;10&lt;/sup&gt;Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core
    corecore