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Abstract Globally, Anastatus species (Hymenoptera: Eupelmidae) are associated with the invasive agricultural

pest Halyomorpha halys (St�al) (Hemiptera: Pentatomidae). In Europe, the polyphagous Anastatus

bifasciatus (Geoffroy) is the most prevalent native egg parasitoid on H. halys eggs and is currently

being tested as a candidate for augmentative biological control. Anastatus bifasciatus frequently dis-

plays behavior without oviposition, and induces additional host mortality through oviposition dam-

age and host feeding that is not measured with offspring emergence. This exacerbates accurate

assessment of parasitism and host impact, which is crucial for efficacy evaluation as well as for pre-

and post-release risk assessment. To address this, a general Anastatus primer set amplifying a 318-bp

fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed. When

challenged with DNA of three Anastatus species—A. bifasciatus, Anastatus japonicus Ashmead, and

Anastatus sp.—, five scelionid parasitoid species that might be encountered in the same host environ-

ments and 11 pentatomid host species, only Anastatus DNA was successfully amplified. When

applied to eggs of the target host, H. halys, and an exemplary non-target host, Dendrolimus pini L.

(Lepidoptera: Lasiocampidae), subjected to host feeding, no Anastatus amplicons were produced.

Eggs of the two host species containing A. bifasciatus parasitoid stages, from 1-h-old eggs to pupae,

and emerged eggs yielded Anastatus fragments. Confirmation of parasitoid presence with dissections

and subsequent PCRs with the developed primer pair resulted in 95% success for 1-h-old parasitoid

eggs. For both host species, field-exposed sentinel emerged eggs stored dry for 6 months, 100% of

the specimens produced Anastatus amplicons. This DNA-based screening method can be used in

combination with conventional methods to better interpret host-parasitoid and parasitoid-para-

sitoid interactions. It will help address ecological questions related to an environmentally friendly

approach for the control ofH. halys in invaded areas.

Introduction

In the field of biological control, molecular diagnostic

tools are useful for evaluating population genetics of natu-

ral enemies, assessing non-target effects, and accurately

identifying biocontrol agents (Bigler et al., 2005; Gariepy

et al., 2007). These tools may supplement traditional

methods of species identification that, for parasitoids,

mainly consist of rearing the natural enemies and dissect-

ing their hosts.

Of recent interest globally is the brown marmorated

stink bug, Halyomorpha halys (St�al) (Hemiptera: Pentato-

midae), and the potential to use parasitoids in a biocontrol

strategy for this pest. Halyomorpha halys is a polyphagous

species of Asian origin that has become highly invasive in

North America and Europe following accidental introduc-

tion in the 1990s and early 2000s, respectively (Hoebeke &

Carter, 2003; Wermelinger et al., 2008; Haye et al.,
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2014a,2014b). A more recent introduction occurred in

2017 in South America (Fa�undez & Rider, 2017). In North

America and Europe, H. halys has caused tremendous

damage as an agricultural pest on several economically

important host plants, including apple, pear, peach, hazel-

nut, and maize (Leskey et al., 2012; Maistrello et al., 2017;

Bosco et al., 2018).

In its native range, H. halys is attacked by a complex of

scelionid and eupelmid egg parasitoids, with Trissolcus

japonicus Ashmead (Hymenoptera: Scelionidae) as the

most prevalent species (Yang et al., 2009; Zhang et al.,

2017). In Europe, native scelionid species typically associ-

ated with other pentatomids attempt to attack H. halys

eggs, but are unable to complete development (Haye et al.,

2015). As such, European Trissolcus and Telenomus species

are not promising candidate agents for biological control

of H. halys. In contrast, another European egg parasitoid,

Anastatus bifasciatus Geoffroy (Hymenoptera: Eupelmi-

dae), is the species most commonly found parasitizing

H. halys eggs, and can complete its development on live

H. halys eggs. This polyphagous, solitary species has been

reared from sentinel and natural field-collected H. halys

eggs in several European countries (Haye et al., 2015; Costi

et al., 2019) and is currently being tested as a biocontrol

agent in the field in Switzerland and Italy. Natural field

parasitism assessed by rearing is generally quite low (e.g.,

Costi et al., 2019). However, A. bifasciatus induces addi-

tional host mortality through oviposition damage (the

parasitoid oviposits, the host dies, but parasitoid offspring

fails to emerge) and host feeding (the parasitoid feeds on

the host fluids, the host dies), which in fact is equivalent to

host mortality related to offspring production (Stahl et al.,

2019a). In addition to H. halys, A. bifasciatus successfully

parasitizes eggs of other European Heteroptera and Lepi-

doptera, including several species of conservational con-

cern (Noyes, 2014; Stahl et al., 2018).

Accurate assessment of parasitism of H. halys in the

field can be difficult. First, species-level identification of

the host eggs is challenging, as there are few distinguishing

morphological characters in the egg stage (Esselbaugh,

1946; Bundy & McPherson, 2000; Gariepy et al., 2014).

Usually, recovered egg masses are found when nymphs

have already hatched, which further exacerbates identifica-

tion efforts. Identifying the associated egg parasitoids after

their emergence is similarly challenging. There are species

identification methods described for parasitoids of Het-

eroptera, based on exit holes and morphology of the frass

the parasitoid larva has left behind in the egg (Viggiani &

Mineo, 1970), but the applicability and reliability of those

methods in multispecies systems could be questioned.

Even if the parasitoid was still present inside the host egg,

pre-imaginal mortality can prevent identification via

rearing and even dissections are of little use once the para-

sitoids have disintegrated. To overcome some of these

difficulties, a modified DNA barcode approach was devel-

oped with general primers for Pentatomidae and Scelion-

idae in order to evaluate host-parasitoid associations in

this system (Gariepy et al., 2014; Gariepy et al., 2019).

However, Anastatus species were not included in this

analysis.

For risk assessment and to evaluate biocontrol efficacy

of A. bifasciatus, a molecular approach using PCR primers

that can detect the presence of A. bifasciatusDNA within a

host would greatly improve the ability to rapidly and accu-

rately identify A. bifasciatus in H. halys and other poten-

tial hosts, and would provide a more accurate estimate of

parasitism level. Once designed, newly developed primers

need to be tested in terms of their specificity and sensitiv-

ity: if the primers are not specific enough, they can amplify

each other, or DNA from species other than the one they

were designed for, both of which would lead to false posi-

tives (Admassu et al., 2006). Since hosts are normally asso-

ciated with a limited number of parasitoids, primer

specificity testing can be restricted to species closely related

to the parasitoid the primers were designed for and species

that parasitize closely related hosts (Gariepy et al., 2007).

The sensitivity of a primer set measures which stages of the

parasitoid can be detected. It is important to ensure that

all developmental stages are detectable, to prevent an

underestimation of parasitism level due to false negatives.

To gain more information regarding host-parasitoid asso-

ciations in this system, a set of general PCR primers nested

within the DNA barcode regions were developed for Anas-

tatus, and evaluated in terms of specificity, sensitivity, and

applicability to field samples using the target hostH. halys

and an exemplary non-target host.

Material and methods

Primer design

Publically available DNA sequences for Anastatus species

associated with pentatomid eggs (generated as part of

another research project; TD Gariepy, unpubl.) were

retrieved from the DNA barcode of life datasystems

(BOLD), project NASTA (Table 1). The 652-bp COI

sequences for Anastatus were aligned using the Clustal W

algorithm (Thompson et al., 1994) in Codon Code Aligner

(v.4.0.4). Visual inspection of regions of DNA sequence

similarity were used to design primers nested within the

DNA barcode region that would amplify all three species

of Anastatus. Furthermore, Anastatus DNA sequences

were aligned with representative members of the Scelion-

idae (BOLD project NSCEL) and Pentatomidae (BOLD

project HCNC) to ensure adequate sequence variation
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existed within these regions to prevent non-specific ampli-

fication of the Pentatomidae and the Scelionidae, as one or

more of these species could be present in mixedDNA sam-

ples extracted from host eggs.

Primer specificity

The specificity of the primer pair (Ana-361F and HCO-

2198) was tested in separate PCR reactions with DNA

from three Anastatus species, as well as with DNA of five

scelionid parasitoids, and 11 pentatomid hosts (Table 2).

Amplification of DNA was performed in an Eppendorf

Mastercycler Pro PCRs in a 25-µl volume containing

0.125 µl of Taq Platinum, 2.5 µl of 109 PCR buffer,

1.25 µl of 50 mMMgCl2, 0.125 µl of 10 µM dNTPs (Invit-

rogen), 0.25 µl of 10 µM Ana-361F (50-ATCACATAG
GGGTCCTTCAGTA-30), 0.25 µl of 10 µM HCO2198

(50-TAAACTTCAGGGTGACCAAAAAATCA-30) (Folmer

et al., 1994), 19.5 µl ddH2O, and 1 µl of template DNA.

Thermocycling conditions were as follows: initial denatu-

ration at 94 °C for 1 min, followed by 35 cycles of 94 °C
for 40 s, 58 °C for 40 s, and 72 °C for 1 min, and a final

extension period of 5 min at 72 °C.

Primer sensitivity

The ability of the molecular markers to detect trace

amounts of parasitoid DNA was tested in time trials to

determine how soon parasitoid DNA could be detected

following oviposition, which developmental stages of the

egg parasitoid could be detected, and whether A. bifascia-

tusDNA can be detected in host eggs following emergence

(based on trace levels of DNA present in parasitoid frass

left in the egg). As A. bifasciatus regularly displays host

feeding and can display oviposition behavior without egg

deposition, host mortality caused by these behaviors are of

interest in the assessment of this species as a biocontrol

agent. However, they cannot be measured by offspring

emergence or with identification of punctured host eggs,

particularly in field-collected samples. Therefore, the sen-

sitivity of the primers was tested onH. halys eggs that had

been probed and subjected to host feeding. Each treatment

was repeated 209.

All tests apart from the host-feeding treatment were

conducted both with the hosts H. halys and Dendrolimus

pini L. (Lepidoptera: Lasiocampidae), a non-target species

recently shown to be a suitable host for A. bifasciatus. As a

negative control, fresh (<24 h), non-parasitized H. halys

andD. pini eggs were used.

To obtain different stages of the parasitoid, fresh host

eggs (<24 h) were exposed at 26 °C to randomly selected

A. bifasciatus females in 54 9 14 mm Petri dish arenas.

Oviposition behavior was observed with a ‘Leica MS5’

microscope (Leica Biosystems, Nussloch, Germany),

probed eggs were separated and stored for different peri-

ods at 26 °C to allow the parasitoids to stay in the egg

phase (1 h) or develop into an early instar (3 days), late

instar (7 days), and the pupal stage (21 days). After the

selected time periods the eggs were transferred to 2-ml

Sarstedt tubes filled with 95% ethanol. For the probed and

host-fed H. halys eggs, the parasitoid females were

removed from the eggs after observed ovipositor insertion

and the end of the first host-feeding event and the eggs

immediately transferred into ethanol.

To correct for parasitization behavior without actual

oviposition, storedH. halys eggs were visually and non-in-

vasively examined for A. bifasciatus presence after 7 and

21 days. Only those host eggs containing parasitoid larvae

(after 7 days) or pupae (after 21 days) were transferred

into ethanol. The presence of earlier developmental stages

(as well as all stages in D. pini) can rarely be ascertained in

Table 1 Origin of testedAnastatus species

Species BIN Origin n

A. japonicus ACE0140 FreshHalyomorpha halys

eggmasses in Asia

37

A. bifasciatus ACX9265 SentinelH. halys

eggmasses in Europe

3

Anastatus sp. ACP8173 Unidentified pentatomid

eggmass in Canada

10

Table 2 List of tested parasitoid and host species

Group Species n

Eupelmid

parasitoids

Anastatus japonicusAshmead 17

Anastatus bifasciatus (Geoffroy) 11

Anastatus sp. 6

Scelionid

parasitoids

Telenomus chloropus (Thomson) 10

Trissolcus semistriatus (Nees) 10

Trissolcus japonicusAshmead 10

Telenomus podisiAshmead 11

Trissolcus euschisti (Ashmead) 4

Pentatomid hosts Acrosternum hilare Say 3

Banase dimidiadae (Say) 2

Brochymena quadripustulatus

(Fabricius)

3

Cosmopepla bimaculate (Thomas) 2

Dolycoris baccarum (L.) 2

Euschistus variolarius (Palisot) 2

Halyomorpha halys (St�ahl) 8

Nezara viridula (L.) 2

Podisus maculiventris (Say) 3

Rhaphigaster nebulosa (Poda) 3

Thyanta acerraMcAtee 2
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a non-invasive way, so for these categories all host eggs

were placed in ethanol. As a control for the presence of

A. bifasciatus, additional potentially parasitized H. halys

and D. pini eggs placed into ethanol 1 h (egg stage), 12 h

(egg stage), 24 h (egg stage), and 3, 7, and 21 days after

observed oviposition behavior were dissected. When

A. bifasciatus presence was confirmed by dissection, the

remains of the dissected host and parasitoid were subjected

to the same molecular procedures as described below. In

addition to the host eggs containing prematureA. bifascia-

tus stages, empty eggs were transferred to ethanol <24 h

after parasitoid emergence to determine the ability to

detect parasitoid DNA from empty eggs.

Application to field-collected samples

As one of the most important applications of the devel-

oped molecular marker is the identification of Anastatus

parasitoids from field-collected samples, field-exposed

sentinel eggs of H. halys and D. pini were stored for ca.

6 months at 26 °C and subjected to the same DNA extrac-

tion and amplification procedures as the time trial sam-

ples. This included empty eggs (from which Anastatus had

already emerged), as well as non-emerged eggs from the

same eggmasses that yieldedAnastatus adults.

Molecular analysis

Samples were transferred to 1.5-ml Eppendorf vials indi-

vidually with a clean, sterile paint brush after which 50 µl
of digestion buffer (100 mM NaCl, 10 mM Tris:HCL pH

8.0, and 25 mM EDTA) was added. The material was

shredded with a pellet mixer (VWR International, Lutter-

worth, UK) for ca. 1-2 min until homogenized. Previously

dissected material used to control for parasitoid presence

was not shredded further. The paint brush and mixer tip

were washed first in diluted bleach solution, then 70%

ethanol, and finally water between each sample to avoid

contamination. Fifty µl of a mixture of digestion buffer

(48 µl) and proteinase K (0.2 mg ml-1; Qiagen, Hilden,

Germany) (2 µl) was added to the homogenate, and vials

were incubated for 2–5 h in a 56 °C shaking water bath

(type 1083; GFL Gesellschaft f€ur Labortechnik, Burgwedel,

Germany) after which 40 µl 6 M NaCl and 140 µl 100%
chloroform was added; the samples were mixed for

20 min with a horizontal shaker (HS 501 digital; IKA

Labortechnik, Staufen, Germany). After 5 min of cen-

trifuging at 20 000 g, the supernatant water phase with the

isolated nucleic acids was transferred into a new 1.5-ml

Eppendorf tube. To precipitate the DNA 140 µl of 100%
isopropanol was added as well as 2 µl 15 mg ml�1 Glyco-

Blue (Thermo Scientific, Waltham, MA, USA) to stain the

forming pellet. The mixture was incubated for 5 min on

the shaker and then centrifuged for 20 min at 20 000 g.

Subsequently, the supernatant was discarded, and the

remaining pellet washed 39 with 150 µl of 70% ethanol

(centrifuged for 5 min at 20 000 g and liquid discarded),

after which the DNA pellets were vacuum dried (Concen-

trator 5301; Eppendorf, Hamburg, Germany) for 1–2 min

at 45 °C until all remaining liquid had evaporated. The

DNAwas resuspended in 20 µl Milli-Qwater.

For the PCR, a 25-µl reaction volume was prepared with

2.5 µl 109 reaction buffer + Mg (Roche Diagnostics,

Mannheim, Germany), 0.125 µl 10 mM dNTP mix (Fer-

mentas, Waltham, MA, USA), 0.25 µl 10 µM Ana-361F

forward primer (50-ATCACATAGGGGTCCTTCAGTA-
30) and 0.25 µl 10 µM HCO-2198 reverse primer (50-
TAAACTTCAGGGTGACCAAAAAATCA-30), 20.75 µl
ddH2O, 0.125 µl Taq DNA polymerase (Roche Holding,

Basel, Switzerland), and 1 µl template DNA. The PCR was

run in an Applied Biosystems Veriti 96-Well Thermal

Cycler (Thermo Scientific) with initial denaturation at

94 °C for 1 min, 40 cycles of 40 s annealing at 58 °C, and
1 min extension at 72 °C, followed by 5 min of final

extension at 72 °C.
PCR products were visualized with gel electrophoresis,

5 µl of template DNA was blended with 3 µl 69DNAGel

Loading Dye (Thermo Scientific) and run on a 2% agarose

gel with 19 TAE buffer and 0.05 µl ml�1 ethidium bro-

mide next to 1 µl 0.1 µg µl�1 flanking ladder GeneRuler

100 bp Plus (Thermo Scientific). The results were visual-

ized with a GeneFlash Bio Imaging Gel Documentation

System UV/VVIS Gene Flash (Syngene International, Ban-

galore, India).

Statistical analysis

The number of samples in which Anastatus DNA was

detected was compared for time trials and field samples

with a generalized linear model (GLM) with a binomial

distribution using the logit link function, with detection as

the dichotomous response variable, and the hostsH. halys

andD. pini as independent variable for each time interval/

treatment, in R v.3.2.3 (R Core Team, 2014) and the devel-

opment environment RStudio (2017).

Results

Primer design

Alignment of the DNA barcode region of the COI gene

from public sequences available on BOLD allowed the

identification of short nucleotide sequences conserved

within the genus Anastatus, but with sufficient variation to

permit exclusion of members of the families Pentatomidae

and Scelionidae (Table S1). This resulted in the develop-

ment of a unique forward primer, Ana-361F (50-ATCA
CATAGGGGTCCTTCAGTA-30) that when used in
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combination with the universal reverse primer HCO-2198

(Folmer et al., 1994), yields a 318-bp PCR fragment for

Anastatus spp.

Primer specificity

When challenged with DNA from different Anastatus spe-

cies, the primer combination Ana-361F and HCO-2198

successfully amplified an ca. 320-bp fragment for all Anas-

tatus specimens collected from Europe (A. bifasciatus,

n = 11), China (A. japonicus, n = 17), and Canada (Anas-

tatus sp., n = 6), whereas no DNA amplification was

observed for specimens of Scelionidae and Pentatomidae

(Figure 1). No PCR amplicons were observed for D. pini,

the representative lepidopteran host used in subsequent

experiments (data not shown).

Primer sensitivity

Anastatus-specific products were yielded by 45% of

H. halys and 55% of D. pini eggs placed in alcohol 1 h

after observed parasitization behavior (Figure 2). Of speci-

mens transferred to ethanol after 3 days, 30 and 35% of

H. halys and D. pini, respectively, were positive for Anas-

tatus DNA (Figure 2). For both time intervals the values

were not significantly different between host species

(binomial GLM, 1 h: z = �0.631, P = 0.53; 3 days:

z = �0.337, P = 0.74, both d.f. = 1,38). After 7 and

21 days development, Anastatus was more frequently

detected in H. halys samples (95 and 100%) than in

D. pini samples (70 and 55%) (binomial GLM, 7 days:

z = 1.846, P = 0.030; 21 days: z = 0.008, P<0.001, both
d.f. = 1,38). For both host species, 100%of the tested sam-

ples transferred to alcohol <24 h after adult A. bifasciatus

emergence producedAnastatus amplicons (Figure 2).

Dissection of eggs drilled by A. bifasciatus (from the

same batch as those from which DNA was extracted and

tested with the Anastatus-specific primers) revealed that

20–56% of the H. halys and D. pini eggs contained the

expectedA. bifasciatus stages (Figure 3). Upon testing only

those eggs that were found to contain A. bifasciatus, DNA

amplification resulted in 89% (24-h-old eggs) to 100%

(young and old larvae, pupae) detection of Anastatus (Fig-

ure 4).

Application to field-collected samples

In field-exposed sentinel eggs belonging to both host spe-

cies, parasitoid DNA was detected in empty eggs following

parasitoid emergence ca. 5–6 months prior to preserva-

tion in ethanol for subsequentmolecular analysis. For both

host species, all specimens (n = 20 for H. halys, n = 10

for D. pini) produced Anastatus amplicons (Figure 5). In

contrast, Anastatus was detected in 15% of non-emerged

H. halys eggs and 58% of non-emerged D. pini eggs col-

lected from the same field-exposed sentinel eggmasses that

100
15

200

400
1 000

3 000

P
ea

k 
si

ze
 (b

p)

Ab Ab Ab Ab Aj Aj Aj Aj Asp Asp Asp Asp Tec Tep Tre Trj Trs Bq Db Ev Hh Nv Rn NEG

Anastatus species Scelionidae species Pentatomidae species

Figure 1 Specificity ofAnastatus PCR primers (Ana-361F andHCO2198) when challenged withDNA fromA. bifasciatus (Ab),A.

japonicus (Aj), andAnastatus sp. (Asp), as well as several scelionid parasitoid species (Telenomus chloropus, Tec; Te. podisi, Tep; Trissolcus

euschisti, Tre; Tr. japonicus, Trj; Tr. semistriatus, Trs) and pentatomid species (Brochymena quadripustulata, Bq;Dolycoris baccarum, Db;

Euschistus variolarius, Ev;Halyomorpha halys, Hh;Nezara viridula, Nv; Rhaphigaster nebulosa, Rn). Peak size refers to DNA fragment size

(no. base pairs) according to a size-ladder on the left of the figure.

Figure 2 Percentage ofAnastatus bifasciatus parasitoid DNA

detected after various time intervals with the hostsHalyomorpha

halys andDendrolimus pini. Host eggs were placed in alcohol

directly after probing without oviposition (probing), after a

development time of the parasitoid of 1 h (egg), 3 days (early

instar), 7 days (late instar), and 21 days (pupa), and <24 h after

adult parasitoid emergence (emerged) (n = 20 host eggs per time

interval). Non-parasitized host eggs served as negative control

(control; n = 20). Asterisks indicate significant differences of

pairwise comparisons between host species within a time interval

(binomial GLM: P<0.05).
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had also yielded Anastatus adults (Figure 4). There were

no significant differences between the detection levels in

the two hosts (binomial GLM, z = �1.92, d.f. = 1,47,

P = 0.052).

Discussion

In the present study, a set of PCR primers capable of

detecting Anastatus species DNA without non-target

amplification of scelionid, pentatomid, and Lepidoptera

DNA is reported. Although these primers are capable of

amplifying the three Anastatus species from the present

study, their broad applicability to other members with the

same genus and/or in the Eupelmidae from other host-

parasitoid systems is unknown and should be tested. How-

ever, in the current context, the number of species

interactions that may occur within the present host-para-

sitoid system are limited and therefore the ability of the

primers to separate Anastatus DNA from pentatomid and

scelionid DNA is sufficient for the research questions

addressed here.

A total of 57% of host eggs that potentially contained

various stages of A. bifasciatus (egg, larva, pupa, post-

emergence empty egg) produced Anastatus amplicons. In

contrast, 95% of host eggs that were dissected 1 h post-

parasitism and subjected to molecular analysis (following

confirmation of the presence of a parasitoid egg) were pos-

itive for Anastatus DNA. This suggests that the molecular

tool is sensitive enough to consistently detect parasitoid

eggs, and the comparatively low detection level (57%) in

the time trial series was largely the result of parasitoid

probing behavior without actual oviposition. Successful

oviposition by A. bifasciatus cannot be evaluated by visual

inspection of the egg, and although probing of the egg can

be observed, roughly only half of the eggs are used for

oviposition, whereas the other half are exclusively used for

host feeding (Konopka et al., 2017; Stahl et al., 2019a).

Recently, trophic interactions between Pentatomidae

hosts, including H. halys, and their scelionid parasitoids

were investigated in North America with a modified DNA

barcode approach (Gariepy et al., 2019). Given that the

Anastatus primers are also within the DNA barcoding

region, they could, if proven to be compatible, potentially

be used in combination with the primer pair for Scelion-

idae (SCEL: SCEL-F1/HCO-2198) (Gariepy et al., 2014) to

assess multispecies interactions in the Pentatomidae.

However, in order to determine species-level interactions,

DNA sequencing of both scelionid and Anastatus ampli-

cons would be required for species-level resolution (as was

Figure 3 Percentage of dissected eggs containingAnastatus

bifasciatus after various developmental time intervals in the hosts

Halyomorpha halys andDendrolimus pini. Samples with a

development time of 1 h (egg; n = 25H. halys/27D. pini), 12 h

(egg; n = 24/25), and 24 h (egg; n = 23/23), 3 days (early instar;

n = 20/20), 7 days (late instar; n = 0/9), and 21 days (pupa;

n = 0/9).

Figure 4 Percentage ofAnastatus bifasciatus parasitoid DNA

detected in the dissected parasitoid stages, with a development

time of 1 h (egg; n = 20 host eggs), 12 h (egg; n = 21), and 24 h

(egg; n = 18), 3 days (early instar; n = 2), 7 days (late instar;

n = 6), and 21 days (pupa; n = 5).

Figure 5 Percentage ofAnastatus bifasciatus parasitoid DNA

detected in the various treatments of the field-collected samples

withHalyomorpha halys andDendrolimus pini as hosts. Eggs were

stored in ethanol for up to 6 months after adult parasitoid

emergence (field emerged; n = 20H. halys/10D. pini); non-

emerged eggs (n = 113/12) were from the same eggmasses from

whichA. bifasciatus had emerged (field emerged eggs). Non-

parasitized host eggs served as negative control (control; n = 20).

Molecular tool forAnastatus identification 697



done for scelionids and pentatomids in Gariepy et al.,

2019). This type of DNA sequencing approach allows

broad applicability of the technique, regardless of geogra-

phy, as the same primers amplify Anastatus from North

America, Europe, and Asia, and the DNA barcode library

for these species (BOLD project NASTA) would allow spe-

cies separation based on single-nucleotide polymorphisms

in the DNA barcode region. An improved understanding

of species interactions is of particular interest, as T. japoni-

cus has recently been discovered in Europe, and is estab-

lished in Switzerland in locations where A. bifasciatus is

frequently found (Stahl et al., 2019b). Laboratory studies

on interactions between T. japonicus and A. bifasciatus

suggest the potential for coexistence, but field data from

Europe are needed to confirm this, and to determine

whether the two species will compete for target and non-

target host resources (Yang et al., 2009; Qiu & Yang, 2010;

Konopka et al., 2017).

Recent studies indicate that pre-imaginal mortality of

A. bifasciatus in H. halys is indeed a variable that should

not be neglected (Stahl et al., 2019a). However, accurate

measurements with dissections are often exacerbated by

the possibility that parasitoid development has not yet

reached a detectable stage, or that dead parasitoids have

decayed beyond the ability to detect or identify them

(Ratcliffe et al., 2002). A large-scale comparison of para-

sitism estimates based on dissection, rearing, and molec-

ular techniques in another host-parasitoid system has

shown that molecular techniques provide more accurate

estimates of parasitism and parasitoid species composi-

tion, whereas rearing and dissection tend to underesti-

mate parasitoid-induced mortality (Gariepy et al., 2008).

In the present system, parasitoid-induced mortality can

be from host stinging, either with or without oviposi-

tion, and it can also be inflicted from host-feeding. Host

mortality due exclusively to parasitoid feeding events

cannot be detected by dissection (Day, 1994; Cebolla

et al., 2018), nor can it be detected with the Anastatus

primers described here. Although we assume that minute

traces of parasitoid DNA would be transferred to the

host egg during probing stinging (e.g., calyx fluid) or

feeding (e.g., saliva), these are not detectable with the

protocol developed here. Perhaps further refinement of

the protocol to increase detection sensitivity will allow

minute quantities of DNA to be detected.

Detection of parasitoid DNA within a host does not

necessarily indicate parasitoid survival and associated host

mortality; however, it does indicate that attack of a given

host has occurred. This is extremely valuable as a non-tar-

get risk-assessment tool, as detection of parasitoid DNA

clearly demonstrates the potential of a parasitoid to use a

given host species as a resource (Gariepy et al., 2008).

Anastatus bifasciatus is known to be an extremely polypha-

gous parasitoid that attacks and develops in a variety of

Hemiptera and Lepidoptera, some of which are of conser-

vational concern (Noyes, 2014; Stahl et al., 2018). With

this molecular tool, recovered eggs from the field can be

screened for the presence or absence of Anastatus species,

and trace amounts of DNA can even be detected following

parasitoid emergence. This forensic-style approach

(screening of empty egg masses for traces of parasitoid

DNA) can provide valuable information regarding the

ecological host range and impact of a parasitoid on non-

target species, which is often a decisive factor in pre- and

post-release assessments of biocontrol agents (Gariepy

et al., 2008, 2019). In the present study, field-exposed sen-

tinel egg masses which had been stored for several months

at 26 °C nonetheless yielded Anastatus PCR products,

despite the fact that storage conditions were less than ideal

in terms of preserving DNA and preventing degradation.

Although prolonged exposure under field conditions may

result in quicker degradation of DNA, this clearly demon-

strates that the Anastatus primers are capable of detecting

DNA from dry, decaying eggs from emerged and non-

emerged eggs. As the PCR primers amplify a fairly short

fragment of the COI gene (ca. 320 bp), it can be consid-

ered a ‘mini-barcode’, which is more likely to be detectable

after longer periods of storage in comparison to longer

fragments (Hajibabaei &McKenna, 2012).

The availability of a molecular tool to detect the pres-

ence of A. bifasciatus is also very useful in laboratory stud-

ies. Oviposition behavior in A. bifasciatusmay or may not

result in the insertion of an egg within a host, and there is

no way to determine whether oviposition was successful,

based on observation or visual inspection of the probed

host egg. As such, results from laboratory experiments can

be difficult to interpret, as they rely primarily on offspring

emergence, which can take several weeks under regular

conditions and several months if diapause has been

induced, during which time the host and/or parasitoid

may be subjected to increased mortality (Konopka et al.,

2017; Stahl et al., 2019a). This delay between observed

attack and confirmation of parasitism is time consuming

and may not provide accurate results based on mortality

experienced in rearing. In contrast, molecular tools can

provide a rapid, accurate assessment of parasitism within

<24 h following observed oviposition. However, it is

important to note that molecular detection of parasitism

does not necessarily reflect successful parasitism, and

molecular assessment requires destructive sampling, which

therefore prevents the measurement of successful para-

sitoid development within a given host species. However,

a combination of rearing and molecular analysis of

separate samples would facilitate a more accurate
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representation of parasitism events, and an indication of

whether successful development occurs.

The utility of the Anastatus primers as a molecular tool

in both field and laboratory studies will permit the evalua-

tion of a promising biocontrol agent for invasiveH. halys,

and will greatly facilitate pre- and post-release studies on

A. bifasciatus in Europe. In addition, the fact that these

primers amplify at least three species of Anastatus associ-

ated with the Pentatomidae provides additional flexibility

in their application in other geographic areas where these

species exist and where there may be interest in evaluating

their biocontrol potential for H. halys. Although the cur-

rent application of the primers is to detect presence/ab-

sence of Anastatus, their utility can be expanded by

implementing them in a DNA barcoding approach. DNA

sequencing of the resulting 320-bp PCR product, and

comparison of sequences with publicly available DNA bar-

codes (BOLD project NASTA) would allow species separa-

tion, which may be of interest in areas where multiple

Anastatus species co-occur with overlapping host range.

Overall, the development and application of such a tool

will help address ecological questions related to a reduced-

risk, environmentally friendly approach for the control of

H. halys in invaded areas, and can be used in combination

with conventional methods to better interpret host-para-

sitoid and parasitoid-parasitoid interactions.
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