26 research outputs found

    A Comparison Between Recent Experimental Results and Existing Correlations for Microfin Tubes for Refrigerant and Nanolubricants Mixtures Two Phase Flow Boiling

    Get PDF
    Driven by higher energy efficiency targets, there is critical need for major heat transfer enhancements in heat exchangers. Nanolubricants, that is, nanoparticles dispersed in the non-volatile component of a mixture, have the potential to increase the heat transfer coefficient by 20% or more for two-phase flow boiling with small or no penalization on the two-phase flow pressure drop. The present work builds upon these intriguing yet unexplained findings, which were documented in the experiments of the present study for one type of nanolubricant, but for which a theory still does not exist. This paper presents a comparison between existing models in the literature and recent new experimental data for two phase flow boiling in a microfin tube of refrigerant R410A and nanolubricants mixtures. Alumina Oxide (g-Al2O3) based nanolubricants with 40 nominal particle diameter of approximately spherical shape were investigated. The nanoparticles concentration in the lubricant varied from 10 to about 20 in mass percentage, and the lubricant concentration varied from 0 up to 3% in mass percentage. The models available in the open domain literature were not able to capture the effects of the nanoparticles on the two-phase flow heat transfer coefficient. The augmented thermal conductivity of the lubricant due to the addition of highly conductive nanoparticles was not the main mechanism responsible for the heat transfer enhancements. The discrepancy between the simulation results and the experimental data was postulated to be due to non-Newtonian behaviors due to the presence of nanoparticles and surfactants. The flow development of the liquid phase of the mixture and the localized thickening and thinning of the liquid film thickness around the inner walls of the tube can alter the film local convective thermal resistance.

    Modeling of Lubricant Effects in a Microchannel Type Condenser

    Get PDF
    In HVAC and refrigeration systems, a small portion of the oil circulates with the refrigerant flow through the cycle components, while most of the oil stays in the compressor. The circulating oil can form a fairly homogeneous mixture with the liquid refrigerant, or it can exist as a separate oil-rich film inside the small tubes and headers of a microchannel heat exchanger; the amount of oil held up is affected by the system conditions. The oil retention in the microchannel type condenser is of particular interest as the amount of oil in excess in this component affects the heat transfer capacity and increases the frictional pressure losses. This paper presents a new physics-based model of the oil retention in microchannel-type condensers. The model calculates the local thermodynamic properties in each section for the refrigerant R-410A and Polyester (POE) oil mixture based on the local oil concentration, pressure, temperature, and mass flux. Then the model, which was experimentally validated, predicts the refrigerant-side heat transfer coefficient and pressure drop. The simulation results indicated that the pressure losses increased by over 20% when the oil mass flow rate fraction increased up to 5 weight percent. The augmented mixture viscosity resulted in high frictional pressure drops and shear stress during the two phase flow condensation. The refrigerant side correlations were validated against literature data for in-tube two-phase flow condensation but further investigation is needed for the single-phase annular type flow in microchannel with refrigerant vapor and oil. At low degree of superheat the heat transfer coefficient of the refrigerant and oil mixture was basically unaffected by the oil mass fraction up to 3 weight percent. When the oil mass fraction was higher than 3 weight percent, then the heat transfer capacity of the condenser decreased. At high degree of superheat, the heat transfer coefficient of the oil and refrigerant mixture was penalized when the Oil Mass Fraction (OMF) was higher than 2 weight percent. Further investigation is needed on the suitability and accuracy of the heat transfer coefficients correlations to be adopted with superheated vapor refrigerant and lubricant film in annular flow at the inlet section of the microchannel type condenser

    Rv2577 of mycobacterium tuberculosis Is a virulence factor with dual phosphatase and phosphodiesterase functions

    Get PDF
    Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence

    Rv2577 of Mycobacterium tuberculosis is a virulence factor with dual phosphatase and phosphodiesterase functions

    Get PDF
    Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence.Instituto de BiotecnologíaFil: Forrellad, Marina Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco, Federico Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marrero Diaz de Villegas, Rubén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vazquez, Cristina Lourdes. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yaneff, Agustín. Universidad de Buenos Aires. Instituto de Investigaciones Farmacológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia, Elizabeth Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gutierrez, Maximiliano Gabriel. The Francis Crick Institute, Host-Pathogen Interactions in Tuberculosis Laboratory; Reino UnidoFil: Durán, Rosario. Institut Pasteur de Montevideo; Uruguay. Instituto de Investigaciones Biológicas Clemente Estable; UruguayFil: Villarino, Andrea. Universidad de la República (UdelaR). Facultad de Ciencias. Sección Bioquímica; UruguayFil: Bigi, Fabiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de investigaciones Científicas y Tecnológicas; Argentin

    Genome\u2011wide diversity and runs of homozygosity in the \u201cBraque Fran\ue7ais, type Pyr\ue9n\ue9es\u201d dog breed

    Get PDF
    Objective: Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es dogs with the high-density SNP array to study the genomic diversity of the breed. Results: The average observed (HO) and expected (HE) heterozygosity were 0.371 (\uc2\ub1 0.142) and 0.359 (\uc2\ub1 0.124). Effective population size (NE) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by 75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range FIS= [- 0.127, 0.172]. Inbreeding estimated from ROH (FROH) had mean 0.112 (\uc2\ub1 0.023), with range [0.0526, 0.225]. These results show that the Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
    corecore