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ABSTRACT 
 

In HVAC and refrigeration systems, a small portion of the oil circulates with the refrigerant flow through the cycle 

components, while most of the oil stays in the compressor. The circulating oil can form a fairly homogeneous 

mixture with the liquid refrigerant, or it can exist as a separate oil-rich film inside the small tubes and headers of a 

microchannel heat exchanger; the amount of oil held up is affected by the system conditions. The oil retention in the 

microchannel type condenser is of particular interest as the amount of oil in excess in this component affects the heat 

transfer capacity and increases the frictional pressure losses. This paper presents a new physics-based model of the 

oil retention in microchannel-type condensers. The model calculates the local thermodynamic properties in each 

section for the refrigerant R-410A and Polyester (POE) oil mixture based on the local oil concentration, pressure, 

temperature, and mass flux. Then the model, which was experimentally validated, predicts the refrigerant-side heat 

transfer coefficient and pressure drop. The simulation results indicated that the pressure losses increased by over 

20% when the oil mass flow rate fraction increased up to 5 weight percent. The augmented mixture viscosity 

resulted in high frictional pressure drops and shear stress during the two phase flow condensation. The refrigerant 

side correlations were validated against literature data for in-tube two-phase flow condensation but further 

investigation is needed for the single-phase annular type flow in microchannel with refrigerant vapor and oil. At low 

degree of superheat the heat transfer coefficient of the refrigerant and oil mixture was basically unaffected by the oil 

mass fraction up to 3 weight percent. When the oil mass fraction was higher than 3 weight percent, then the heat 

transfer capacity of the condenser decreased. At high degree of superheat, the heat transfer coefficient of the oil and 

refrigerant mixture was penalized when the Oil Mass Fraction (OMF) was higher than 2 weight percent. Further 

investigation is needed on the suitability and accuracy of the heat transfer coefficients correlations to be adopted 

with superheated vapor refrigerant and lubricant film in annular flow at the inlet section of the microchannel type 

condenser. 

1. INTRODUCTION 

In HVAC and refrigeration systems, oil is used because the compressor moving parts need to be lubricated. The 

refrigerant circulating in the system is mixed with some of the oil inside the compressor and a small amount of oil is 

carried through the refrigeration system components. In the heat exchangers and pipelines, the lubricant in excess 

creates small layers on the internal surfaces, which add thermal resistance to the heat transfer exchange process and 

augment the frictional pressure losses. When oil is present, the heat transfer rate and the pressure drop of the heat 

exchangers are often penalized. Hence, the efficiency of the system is also reduced.  Microchannel type condensers 

have unique oil retention characteristics because of their small internal volume and of their header configuration. For 

microchannel heat exchangers, different models were developed to predict the heat transfer coefficient and to 

optimize the design of the heat exchanger for high performance. Often the models were based on a control volume 

approach and used an effectiveness-NTU method (Incropera and DeWitt, 1996) to solve the heat balance between 

the air side and the refrigerant side. Huang et al. (2012) developed a model to investigate various heat exchanger 

tube geometries. Schwentker et al. (2005) developed a design tool for microchannel heat exchangers. The model 

developed in this paper used a similar approach and it is based on the heat exchanger model originally developed by 

Iu (2007). The user defines the coil geometry parameters and selects the appropriate heat transfer and pressure drop 

correlations. Several researchers investigated correlations to predict the heat transfer and the pressure drop of both 

the refrigerant side and air side in condensers. For example, Chang et al. focused on louvered fins used for 

mailto:abigi@okstate.edu


 

2279, Page 2 
 

15
th 

International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014 

microchannel coils and they developed correlations for heat transfer coefficient (1997) and for friction factors 

(2000). The behavior of the refrigerant and oil mixture during a condensation processes is also available in the 

literature (Bassi and Bansal, 2003; Schlager et al., 1990; Thome, 1995). In 2010, Huang et al. investigated the 

influence of oil on condensation heat transfer coefficient of R-410A for tubes of nominal diameters smaller the 5 

mm. Their correlations are used in the present work as it is discussed later. From this brief literature summary it 

appears that there are several models that are able to predict the heat transfer rate and pressure drop of refrigerant R-

410A two-phase flow condensation in microchannel condensers but they do not often consider the presence of oil in 

circulation with the refrigerant nor they have been experimentally verified when oil is retained in the condenser. 

This paper presents a new physics-based experimentally validated model of the oil retention in microchannel-type 

condensers. The model uses a segmentation method to divide the heat exchanger into small sections along the 

refrigerant flow. By imposing a heat balance and by using the effectiveness-NTU method, the outlet conditions are 

predicted for each section and passed as input for the adjacent section until the entire refrigerant circuitry is 

completed. The model calculates the local thermodynamic properties in each section for the refrigerant R-410A and 

Polyester (POE) oil mixtures based on the local oil concentration, pressure, temperature, and mass flux. Then the 

model predicts the volume of oil retained in the microchannel tubes and its influence on the refrigerant-side heat 

transfer coefficient and pressure drop. The microchannel condenser used for model validation was for a 4-ton 

nominal capacity of a R-410A air conditioning system for residential applications and the microchannel tube 

hydraulic diameter was about 1.7 mm.  

2. MODEL DEVELOPMENT 

The condenser coil tested for the present work was a 2 passes microchannel type heat exchanger with horizontal 

tubes and vertical headers. The condenser section consisted of the top section of the heat exchanger and included the 

top 69 tubes while the bottom 32 tubes were used for subcooling. With the assumption of uniform refrigerant flow 

distribution and uniform air velocity and temperature entering the heat exchanger, the model simplified the 

condenser and the subcooler section to single tubes connected in series, as shown at the bottom in Figure 1. Periodic 

boundary conditions to the single tubes were applied to the condenser tube and to the subcooler tube to estimate the 

capacity of the heat exchanger. Each tube had four ports and a single line of fins and the refrigerant flow rate was 

proportionally scaled. It should be noticed that the refrigerant mass flow rate per port was higher in the subcooler 

because the subcooler had fewer tubes. A segmentation method is shown at the right side of Figure 1 and each single 

tube heat exchanger was divided into a large number of small control volume elements. Each control volume was 

solved iteratively before proceeding to the adjacent control volume. Heat transfer coefficient correlations and 

pressure drop correlations for single and for two phase flow of refrigerant and oil mixtures were used in each control 

volume. The air entering velocity was uniform across the entire face area of the heat exchanger and thus the air flow 

rate was scaled based on the face area of each control volume. After computing the capacity of each control volume, 

the outlet pressure and enthalpy of the refrigerant were passed to the adjacent control volume as inputs, until the 

refrigerant circuitry was solved from inlet to outlet of the heat exchanger. 

 
Figure 1: Full scale microchannel heat exchanger (top left), model of the heat exchanger with two tubes (bottom 

left) and details of the control volume approach for each tube (right) 
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2.1 Assumptions of the model 
The main assumptions and simplifications of the present model were as follows:  

 The coil headers were neglected both in the calculations of the heat transfer rate and pressure drops  

 Uniform refrigerant distribution and uniform air velocity and air temperature entering the heat exchanger 

 The amount of oil trapped in the headers was also neglected 

 The air dry bulb temperature and relative humidity at the outlet of the microchannel coil were calculated from a 

weighted average based on the number of tubes present in the condenser part and in the subcooler part of the 

coil 

2.2 Air Side Correlations 
The air flow at the inlet of the microchannel heat exchanger was characterized by three inlet parameters: the air flow 

rate, the dry bulb temperature and the relative humidity. The calculation of the j-factor for the air heat transfer 

coefficient was based on the correlations by Chang and Wang (1997) shown in Equation (1). 
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This correlation is valid for corrugated fin geometry and in the comparison with experimental data, it gives a mean 

deviation of about 8%. The friction factor for the air pressure drop calculation is based on the friction correlations 

for louver fins by Chang et al. (2000) that is summarized in Equation (2). 
 

           (2) 
 

Where f1, f2, f3 are functions of geometry parameters and are summarized in Equations (3), (4) and (5): 
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The comparison with experimental data of the literature, this correlation had a mean deviation of about 9 to 10%. 

2.3 Refrigerant Side Correlations 
The inlet conditions of the refrigerant were defined by four parameters: the oil absolute mass fraction, the mass flow 

rate, the enthalpy and the pressure. Shen and Groll (2003) observed that the lubricant vapor pressure is negligible 

when compared to the refrigerant vapor pressure and therefore the presence of oil does not affect the mixture vapor 

pressure. The heat transfer coefficient and the pressure drop were calculated as a function of the refrigerant quality. 

When lubricant is present in the simulation, refrigerant properties are corrected as a function of the local oil mass 

fraction (Cremaschi, 2005). In the single phase region the refrigerant heat transfer coefficient was calculated using 

Gnielinski correlation (1976). However, when oil is present, the mixture quality (    ) is defined as in Equation (6). 
 

                                           (6) 
 

Where           and           are the refrigerant vapor and liquid mass flow rates and       is the oil mass flow rate. 

Since oil never enters the vapor phase, the mixture quality is always lower than one, even when the refrigerant is in 

the superheated region. For this reason, when oil is present, the mixture is always in a two-phase flow until the 

refrigerant condensation is completed. In order to account for the presence of oil in the calculation of the 

condensation heat transfer, Huang et al. (2010) proposed a correlation describing the condensation characteristics of 

R-410A and oil mixture for horizontal smooth tubes with inner diameter of 4.18 and 1.6 mm and for a range of 

nominal oil concentration varying from 0 to 5%. In the correlation suggested (see Equation (7)), the condensation 

Nusselt number is calculated taking account of both a forced convection expressed by Equation (8) and a free 

convection component expressed by Equation (9). 
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Where    is a two phase frictional multiplier,      is a function of the void fraction and   and   are coefficients 

determined by linear regression to fit the experimental data, as reported in Huang et al.(2010). The calculation of the 

refrigerant pressure drop is also dependent on the refrigerant quality. The pressure change in the single phase region 

was computed using Fanning friction factor as described in Ragazzi and Pederson (1999). For the two phase area, 

the semi-empirical approach proposed by Lockhard-Martinelli (1949) was applied as described in Cremaschi (2005). 

2.4 Model Implementation and Converging Criteria 
The present work used a heat exchanger numerical solver that was developed by Iu (2007) for a heat pump system. 

The model was implemented in FORTRAN and each single tube was divided in multiple segments whose capacity 

was computed using an effectiveness-NTU method. The air inlet conditions were constant for each segment while 

the refrigerant conditions at the inlet of each segment were obtained from the outlet conditions calculated for the 

previous adjacent segment. The correlation for the calculations of the refrigerant heat transfer coefficient required 

the computation of the Jacob number (Ja) as shown in Equation (9). The Jacob number is the ratio of sensible to 

latent heat absorbed during the process of liquid-vapor phase change and it is described in Equation (10): 
 

                           (10) 
 

Where     is the latent heat of condensation,    is the fluid heat capacity and            and      are respectively the 

surface temperature of the tube wall and the fluid saturation temperature. The wall surface temperature was not 

known a priori and therefore, an iterative process was used to calculate the Jacob number. From a first guess value 

the refrigerant heat transfer coefficient was estimated, the segment capacity was calculated using the effectiveness-

NTU method for cross-flow heat exchangers. The new value of the wall surface temperature was then computed 

from the energy balance on the elemental control volume (that is, on each segment of the coil along the refrigerant 

direction) as shown in Equation (11): 
 

                                  (11) 
 

Where           is the air inlet temperature,     is the segment capacity and     is the air side heat transfer total 

resistance calculated using the j-factor correlation of Equation (1). The flow chart of the model implementation in 

the heat exchanger simulator is shown in Figure 2. The initial guess values of surface temperature was corrected 

until the difference with the guessed value between two consecutive iteration was less than 0.1ºC. Segment by 

segment along the forward direction of the refrigerant flow, the procedure shown in Figure 2 was repeated for the 

entire heat exchanger. In addition, a spreadsheet interface was developed as a tool to analyze the simulation data and 

compare the prediction from the simulation with experimental data when available. The spreadsheet, which was 

developed using Visual Basic and Excel, reproduces a schematic of the microchannel condenser coil and allows to 

compare simulation results with experimental data and to calculate the simulation error of the outlet conditions for 

both the air and the refrigerant side. The coil was mainly divided into five large sections along the direction of the 

refrigerant flow in order to better observe the trends of temperature and pressure from the simulation results and the 

corresponding experimental data. 

3. EXPERIMENTAL DATA FOR MODEL VALIDATION 

Experimental data of the effect of oil on the heat transfer rate and pressure drop of microchannel type condensers 

were measured and were used to validate the predictions from the present model. The microchannel condenser used 

for model validation was for a 4-ton nominal capacity of a R410A air condition system for residential applications 

and the microchannel tube hydraulic diameter was about 1.7 mm. and the geometry of the microchannel heat 

exchanger is given in Table 1. The microchannel type condenser coil was tested at different operation conditions 

with refrigerant R-410A only first and then with refrigerant R-410A and POE lubricant. The experimental data were 

obtained for two level of degree of superheat entering the condenser: one with low degree of superheat and one with 

high degree of superheat. The experimental setup, the test procedures, and test conditions for the experimental data 

of the microchannel condenser were described in details in a companion paper (Yatim et al. 2014). For completeness 
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they are briefly summarized next. The heat exchanger was tested at different operational conditions both with 

refrigerant R410A and with a refrigerant-POE oil mixture; the saturation temperature ranged from 29 to 54 °C and 

the refrigerant flow rate was varied between 0.05 and 0.08 kg/s. Finally, the oil mass fraction was also varied from 

0.5 to 5% in order to observe the rate of refrigerant heat transfer decay and pressure drop increase. 
 

Table 1: geometry parameters 

 

Parameter Value 

Coil Height [mm] 908 

Coil Depth [mm] 1215 

Fin type Louvered 

Channel nominal inside diameter [mm] 1.7 

Number of channels per tube 4 

Number of pass 2 

Number of condenser tubes 69 

Number of subcooler tubes 32 

 

The microchannel was assembled inside a psychrometric 

chamber that allows for control of the air dry bulb temperature 

and relative humidity. Air was moved by a fan installed after 

the heat exchanger coil and air mass flow rate was measured by 

pressure difference across air nozzles. A grid of twenty 

thermocouples was installed at a distance of about 3 centimeters 

after the microchannel coil allowing for temperature 

measurement at the outlet of the heat exchanger. On the 

refrigerant side, temperature and pressure sensors were installed 

at the inlet and outlet of the coil header; refrigerant mass flow 

rate was measured using a mass flow meter installed before the 

coil. Using a variable frequency drive-controlled oil gear pump, 

the oil flow rate was controlled and oil was injected both at the 

inlet and at the outlet of the heat exchanger. In order to calculate 

the oil retention in the microchannel heat exchanger, the 

parameters observed were the flow rate of the injected oil and 

the timing required by the oil to reach the outlet of the oil 

separators. By integrating the oil flow rate over time, the 

amount of oil retained in the microchannel was then estimated 

by computing the difference between the amount of oil injected 

at the inlet and that injected at the outlet of the section. The air 

heat transfer capacity and the refrigerant pressure drop were 

monitored while injecting the oil and then compared with the 

same values observed when running the system at the same 

operational conditions but with no oil. The accuracy of the 

instrumentation is reported in Table 2. Moreover, thermal 

images of the front of the coil were recorded in order to 

measure the coil surface temperature and check for the 

uniformity of the refrigerant flow distribution in the condenser.  

 

Table 2: Experimental uncertainties in the data used for validation of the present model 

 

Parameter Symbol uncertainty  Parameter Symbol uncertainty 

Pressure   ±0.7 psi  Oil mass fraction     0.5 % 

Pressure difference    ±0.03 psi  Oil retention volume     1 % 

Temperature   ±0.1 °F  Pressure drop factor     2 % 

Mass flow rate    ±0.1 %  Heat transfer factor     3 % 

Air volume flow rate     ±0.4 %     

Figure 2: Flow chart of the model 

implementation in the numerical FORTRAN 

solver 
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4. MODEL VALIDATION 

Before validating the model with the data of the present work, the air side heat transfer and the refrigerant side heat 

transfer and pressure drop with and without oil were independently verified with data from the literature. This was 

done to decouple the air side from the refrigerant side and isolate any potential sources of error in the model 

implementation. The numerical solver and algorithm was validated by Iu (2007). The air side heat transfer 

coefficients were verified with the correlations provided by Moallem et al. (2013), which were valid for a broad 

range louvered fin geometries commonly adopted in microchannel condensers. The fin width, fin height, and fin 

depth of the present work were in the range of the correlation provided in Moallem et al. (2013).  

4.1 Validation of the refrigerant side heat transfer coefficient with data from the literature 
The predictions of the refrigerant two phase flow condensation heat transfer coefficient for oil-R410A mixture at 

different oil concentrations were verified against the literature data presented in Huang et al. (2010) and the results 

are reported in Figure 3. Figure 3 shows the simulation results of the present model for the heat transfer coefficient 

at different oil concentrations. The heat transfer coefficient was predicted with an error between ±30% and the 

model underpredicted the data of heat transfer coefficient. The deviation were larger at low oil concentration. In 

agreement with the data by Huang et al. (2010), the two phase flow condensation heat transfer coefficient was lower 

for higher oil concentrations. However, the prediction from the present model did not show a decrease of refrigerant 

side heat transfer coefficient as that reported by Huang et al (2010). 

 

 
Figure 3: Verification of the refrigerant side heat transfer coefficient with literature data (Huang et al. (2010)) 

4.2 Validation of the heat transfer coefficients and pressure drops with data from the present work 
The local surface temperature of the microchannel tube was predicted by the model and it was compared with the 

data gathered by using a thermal camera. The thermal measurements were taken by using an infrared camera (Fluke 

Infrared Solutions IR FlexCam), which had an accuracy of ±1°C (±2°F) and a surface thermocouple (T-type 

thermocouple) was used for calibrating the emissivity in the images taken with the infrared camera. Figure 4a shows 

the thermal image of the microchannel condenser for one test and the center tube within the rectangular box was 

selected as representative tube for the condenser section average surface temperature along the refrigerant flow. 

Figure 4b shows the comparison of the tube surface temperature between the data and the simulation results. The 

case reported in here is for a high degree of vapor superheat of about 36°C (65°F), for which the model had to 

predict a rapid decrease of surface temperature along the tube near the inlet header. There was some deviation at the 

inlet region of the microchannel tube when the degree of superheat was high. At the inlet section, the surface 

temperature predicted by the model was up to 10°C lower than the corresponding data of local surface temperature. 

In the two phase region, the predicted surface temperature by the model was within ±1°C (±2°F) with respect to the 

measured surface temperature. Because the two phase region was the main section contributing to the heat transfer 

rate of the condenser, even though the error in the superheated region surface temperature was large, the overall 

error in the predicted cooling capacity was small.  
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(a) (b) 

Figure 4: Infrared image of the MCHX inlet (a) and surface temperature data vs simulation results (b) 

After both the air and the refrigerant side heat transfer coefficient and pressure drop were independently verified 

with data from the literature, the model was further validated with the data and geometry of the present work. The 

comparisons between experimental and simulation results for the oil free cases are reported in Figure 5. The 

simulation results of the microchannel type condenser showed a deviation within ±20% with respect to the 

experimental data and, in general, the simulation prediction tended to overestimate the capacity. The simulation 

results for the pressure drops had a high discrepancy with respect to the data but it should be noticed that the 

pressure losses in the headers and in the connecting pipes from the pressure taps to the inlet and outlet ports of the 

condenser were not accounted for in the simulation model. It is evident that the error in the pressure drop prediction 

is too large and further investigation is required to address this discrepancy.  In particular, more recent works by Sun 

and Mishima (2009) and Xu and Fang (2013) provide additional correlations for two-phase pressure drop calculation 

in mini and micro-channels that could be implemented in the present model for improving its accuracy. 

  
(a) (b) 

Figure 5: Comparison between experimental data and predicted results for heat capacity (a) and pressure drop (b) 

5. SIMULATION RESULTS AND DISCUSSION 

The results are presented for the cases when the refrigerant enters the microchannel heat exchanger at a low degree 

of superheat and at a high degree of superheat. Simulations were conducted at different oil mass fractions and the 

predicted heat transfer rate and pressure drop were verified against the experimental data with oil. It should be 

noticed that the air side velocity and entering temperatures were constant between the case of oil and the 

corresponding case without oil. Also since the baseline performance with no oil and the performance with oil shared 

same total mixture flow rate, i.e. the refrigerant flow rate only for the baseline performance and refrigerant plus oil 

flow rates for the performance with oil were equal, shared same saturation pressure, shared same inlet refrigerant 

temperature, and shared same air side operating conditions, the results from the comparison between oil and no oil 
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predicted performance provided heat transfer factor and pressure drop factor due to the additional presence of oil in 

circulation with the refrigerant in the condenser. The oil content of the refrigerant-oil mixture is referred to as the 

Oil Mass Flow Rate Fraction (OMF) and was calculated as follows: 
 

                             (12) 
 

Where       and       are respectively the oil and the refrigerant mass flow rates. The Pressure Drop Factor (PDF) 

and the Heat Transfer Factor (HTF) were computed as shown in Equations (13) and (14), in agreement to the 

procedure adopted for the experimental data (Yatim et al. 2014).  

                       (13) 

                     (14) 

 

Where        and       are respectively pressure drop and heat capacity at various oil mass fractions. 

The simulation results for the PDF are reported in Figure 6 and the corresponding HTF are reported in Figure 7. The 

results are reported for saturation temperature of 40.5°C (105°F) and for oil mass fraction from 0 to 5 weight percent 

and for two refrigerant flow rate representative of full and part load conditions for a 4 ton air conditioning system 

for residential applications.  

 

  
(a) (b) 

Figure 6: Pressure Drop Factor (PDF) for (a) low and (b) high degree of superheat 

  
(a) (b) 

Figure 7: Heat Transfer Factor for (a) low and (b) high degree of superheat 

In Figure 6 the PDF increases if the OMF increases. The magnitude of the simulation results of PDFs for the low 

degree of superheat (see Figure 6a) was similar to those observed in the experimental data. The increased mixture 

viscosity resulted in higher frictional pressure drops and shear stress during the two phase flow condensation. At 

high degree of superheat the simulated PDF were higher. This result was also in agreement with the experimental 

observations but the magnitude was quite different. The PDF from the experiments increased up to 1.2 while the 

simulation results showed a PDF of up to 4. This discrepancy might be due to the superheated section of the 
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condenser, in which the oil was present in the inlet header and in the entry region of the tube as excess film layer. 

The approach proposed by Lockhard-Martinelli (1949) seems not to capture this phenomenon and possible reasons 

are the different geometry or the nature of the fluid. The HTF tended to decrease if the OMF increased as shown in 

Figure 7. The data for the low superheat case were in agreement with the experimental data. The HTF was basically 

unaffected by the OMF up to 3 weight percent and this results was observed in the experimental campaign (Yatim et 

al., 2014). When the OMF was higher than 3%, the heat transfer capacity of the condenser decreased. At high 

degree of superheat the HTF predicted by the model showed an unexpected increase of heat transfer at low OMFs. 

Then the HTC decreased if the OMF was higher than 2%. Similar trends were observed in the experimental 

campaign reported in a companion paper (Yatim et al. 2014). At low mass flow rate, the HTF in Figure 7b was 

higher than the conditions with no oil present in the condenser. This aspect must be further investigated before 

drawing general conclusions. In particular the discrepancy of the PDF in Figure 6b might be also responsible for the 

simulation results in Figure 7b.  

6. CONCLUSIONS 

This paper presents a new physics-based model of the lubricant effects on heat transfer rates and pressure drops in 

microchannel-type condensers. The approach of the present model was to divide the heat exchanger coil into a large 

number of sub-segments along the refrigerant flow and to estimate the local thermodynamic properties of the 

refrigerant R-410A and POE oil mixture in each sub-segment based on the local oil concentration, local pressure, 

local temperature, and mass flux inside the microchannel tubes. The present model was experimentally validated 

against data from the literature and data from a companion paper submitted to this conference (Yatim et al. (2014)). 

The simulation results showed a deviation of about ±20% with respect to the experimental data of heat transfer rate 

and, in general, the simulation predictions overestimated the data. When lubricant was present in the microchannel 

type condenser, the heat transfer capacity tended to decrease if the OMF increased. Up to 3 weight percent OMF, the 

presence of oil did not affect the heat transfer capacity significantly with respect to the oil free case. This result was 

in agreement with the experimental results reported by the companion paper to this conference for low degree of 

superheated vapor entering the condenser. When the OMF was higher than 3 weight percent, then the heat transfer 

capacity of the condenser decreased by up to 4%. At high degree of superheat and for higher mass flow rates, the 

heat transfer coefficient of the refrigerant and oil mixture was reduced when the OMF was higher than 2 weight 

percent. The simulation results also predicted an increase in pressure losses by over 20% when the oil mass fraction 

increased to 5 weight percent. The lubricant in circulation with the refrigerant increased the liquid phase viscosity 

and therefore the frictional pressure drops and the shear stresses inside the microchannel tubes. Future work include 

the study of the refrigerant vapor and oil mixtures flow regime in microchannels, the implementation of the 

additional correlations for heat transfer coefficient and frictional pressure drops for various mixture flow regimes, 

and the estimation of the pressure losses in the headers, in order to improve the accuracy of the present 

microchannel condenser model. 

 

NOMENCLATURE 

 
a, b : coefficients in Eq. (8) (-)  Tp : tube pitch (mm) 

Dh : hydraulic diameter (m)  Th : Tp - Dm (mm) 

Dm : major tube diameter (m)  Xtt : Martinelli parameter (-) 

f : Fanning friction factor (-)      

Fd : fin depth (mm)  Greek symbols 

Fl : fin length (mm)  α : heat transfer coefficient (W m
-2

 K
-1

) 

Fp : fin pitch (mm)    : thickness  (mm) 

Ft : fin thickness (mm)  λ : thermal conductivity (W m
-1

 K
-1

) 

Ga : Galileo number (-)    : louver angle (deg) 

j : Colburn factor (-)      

Ja : Jacob number (-)  Subscripts 

Ll : louver length (mm)  B : free convection condensation  

Lp : louver pitch (mm)  f : fin  

NTU : Number of Transfer Units (-)  F : forced convection condensation  

Nu : Nusselt number (-)  L : liquid  

Pr : Prandtl number (-)  o : oil  
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ReLp : Reynolds number based 

on louver pitch 

(-)  r : refrigerant  

tp : two-phase  
Td : tube depth (mm)      
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