22 research outputs found

    Variability in energy cost of running at the end of a triathlon and a marathon

    Get PDF
    International audienceThe aim of this study was to investigate the increase in energy cost of running occurring at the end of a triathlon and a marathon event and to link them to the metabolic and hormonal changes, as well as to variations in stride length. Seven subjects took part in 3 experimental situations: a 2 h 15 min triathlon (30 min swimming, 60 min cycling and 45 min running), a 2 h 15 min marathon (MR) were the fast 45 min were run at the same speed as the triathlon run (TR), and a 45 min isolated run (IR) done at triathlon speed. The results show that energy cost during MR was higher than during TR (p < 0.01) (+ 8.9 %). Similar observations were made for pulmonary ventilation (+ 7.9 %) and heart rate (+ 6.3 %). Moreover, the values were significantly greater than the values obtained during the IR. TR and MR lead to greater weight loss (p < 0.01) (2.4±0.3 kg) than IR (1 ± 0.2 kg). The triathlon and the marathon produced a large decrease in plasma volume (respectively 19.6 ± 1.4 % and 12.9 ± 1.1 %) compared to IR (2 ± 0.4 %). Plasma renin activity was higher for the triathlon and the marathon than for the IR (p < 0.01). MR produces a significantly greater increase in plasma free fatty acids (F.F.A.) than TR (p < 0.05) and IR (p < 0.01). In addition, the F.F.A. at the end of TR were significantly higher than IR (p < 0.05). At the end of the trial the mean stride lengths for TR and IR were greater (+ 15 %) (p <0.01) than for MR. This study, carried out with subjects running overground, confirms the decrease in running efficiency previously shown at the end of a laboratory triathlon, and demonstrates that this decrease is lower than that occurring during a marathon

    Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy

    Full text link
    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent

    Place des lipides dans l'alimentation du sportif

    No full text
    Les acides gras, en tant que substrats énergétiques. Limites à la contribution des lipides dans la fourniture d'énergie. Comment augmenter l'utilisation des acides gras à l'exercice ? Apports lipidiques conseillés chez le sportif

    Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers.

    No full text
    International audienceReal-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

    Hypoxic stimulus alters hypothalamic AMP-activated protein kinase phosphorylation concomitant to hypophagia.

    No full text
    International audienceAcute exposure to hypobaric hypoxia is known to decrease food intake, but the molecular mechanisms of such alteration in feeding behavior remain unknown. We tested the hypothesis that hypothalamic AMP-activated protein kinase (AMPK) phosphorylation is affected by acute exposure to hypobaric hypoxia and thus would be involved in initial anorexia. To address this issue, male rats weighing 255-270 g were either submitted to hypobaric hypoxia (H, equivalent altitude of 5,500 m), maintained under local barometric pressure conditions (N), or pair-fed an equivalent quantity of food to that consumed by H rats (PF), for 6, 24, or 48 h. Daily food intake dropped by 73% during the first day of hypoxia (P<0.01) and remained by 46% lower than in N rats thereafter (P<0.01). Hypoxia per se, as estimated by comparing experimental data between the H and PF groups, increased ob gene transcription and plasma leptin concentration. A transient increase in glucose availability occurred in the H group compared with PF animals (P<0.05). The hypoxic stimulus led to an early and transient decrease in hypothalamic AMPK and acetyl-CoA carboxylase (ACC) phosphorylation, concomitant with hypophagia and associated alterations in nutrients and hormones. An increase in NPY mRNA levels occurred from day 1, similarly in H and PF rats, and thus mainly related to food restriction alone (P<0.05). In conclusion, the present study demonstrates that hypoxia per se inhibited AMPK and ACC phosphorylation in the hypothalamus, concomitant with profound anorexia. A powerful counterregulation occurs rapidly, mediated by NPY and devoted to avoid prolonged anorexia

    Musclin gene expression is strongly related to fast-glycolytic phenotype.

    No full text
    International audienceMusclin has been described as a muscle-derived secretory peptide, responsive to insulin in vivo, and inducing insulin resistance in vitro. Because muscle fibers display very different metabolic properties and insulin sensitivity, we tested the hypothesis that musclin expression could depend on myofiber type. Musclin mRNA was detected at high level in fast gastrocnemius and plantaris muscles, but only as traces in soleus, a slow-twitch muscle. A single fiber analysis showed that musclin was produced by muscle fibers themselves, almost exclusively type IIb fibers. Slow to fast transition of soleus phenotype after hindlimb suspension increased musclin mRNA levels, whereas fast to slow transition of plantaris phenotype after functional overload decreased musclin mRNA levels. This clearly suggests that musclin transcription is strongly related to fast-glycolytic phenotype. We conclude that musclin is produced by myocytes in a highly fiber-type specific manner and that physiological changes in type IIb MHC lead to coordinated musclin expression

    Over-stimulation of the vestibular system and body balance.

    No full text
    The purpose of this study was to examine whether an over-stimulation of the vestibular system, induced by thousands of time saccadic head stimulations, affects the vestibular sensitivity, and consequently if such a phenomenon could contribute to the deterioration of postural stability observed after a long distance running exercise. Eighteen athletic subjects performed a 20.5 km over ground race with an average speed of 15 km x h(-1), corresponding roughly to 7,500 strides shocks with associated saccadic accelerations transmitted to the head. A preliminary validation of the exercise protocol was realized to confirm the effect of the sustained exercise on body balance by recording standard postural parameters. A visually perceived eye level (VPEL) task was used to indirectly assess otolithic sensitivity motionless or undergoing low centrifugation conditions, before and after exercise. Results obtained from body balance analysis confirmed a decreased postural stability illustrated by increased postural oscillations after the 20.5 km run. Under low centrifugation conditions, results showed a lowering of the VPEL with the increase of the gravito-inertial acceleration in accordance with the literature. However, no significant change in the VPEL after a sustained running exercise was observed. In conclusion, the vestibular sensitivity at the otolithic level does not seem to be altered by an intensive running exercise and then failed to play a key role in the post-exercise deterioration of postural stability

    Effects of dehydration and rehydration on EMG changes during fatiguing contractions

    No full text
    ABSTRACT BIGARD, A-X., H. SANCHEZ, G. CLAVEYROLAS, S. MARTIN, B. THIMONIER, and M. J. ARNAUD. Effects of dehydration and rehydration on EMG changes during fatiguing contractions. Med. Sci. Sports Exerc., Vol. 33, No. 10, 2001, pp. 1694 -1700. Purpose: This study measured the effects of sauna-induced dehydration (Dhy) and the effectiveness of rapid rehydration on muscle performance and EMG frequency spectrum changes associated with fatigue during isometric contractions. Methods: Knee extensor muscle strength during isometric maximal voluntary contraction (MVC) and endurance time at 25% and 70% of MVC (ET25 and ET70, respectively) were measured three times in 11 healthy male subjects, under euhydration conditions (Eu), after Dhy, and after rehydration following Dhy (Rhy). Results: Dhy led to a decrease in body weight by 2.95 Ϯ 0.05%. No significant effect of the hydration status was shown on MVC values. A 23% decrease in ET25 was recorded during Dhy (P Ͻ 0.01), whereas ET70 only tended to decrease (Ϫ13%, P ϭ 0.06). ET25 was higher during Rhy than Dhy (8%, P Ͻ 0.05) but remained lower than during Eu (Ϫ17%, P Ͻ 0.05). The EMG root mean square (RMS) increased earlier during Dhy than Eu. Opposite changes were shown for the mean power frequency (MPF) of EMG, and Dhy resulted in an accelerated fall in MPF. However, because ET25 decreased with dehydration, RMS and MPF changes were similar during Eu and Dhy when reported to normalized contraction time, exhaustion was thus associated with similar values of RMS and MPF for all conditions. RMS and MPF changes during Rhy showed an intermediate pattern between Eu and Dhy. Conclusions: Dhy induced an increase in muscle fatigue, associated with early changes in EMG spectral parameters. It is not clear whether these alterations could be attributed to biochemical modifications, and the role of increased perception of effort when subjects were dehydrated should be clarified

    Quantification by real-time PCR of developmental and adult myosin mRNA in rat muscles.

    No full text
    International audienceA real-time RT-PCR assay using newly designed primers was developed to analyze developmental and adult MHC mRNA expression both in skeletal muscles and single fibers. Only 4 ng of total RNA was necessary for the analysis of the relative mRNA expression of MHC genes. Different validation steps were realized concerning both specificity and sensitivity of each primer set, and linearity and efficiency of each real-time PCR amplification. Then, quantification of MHC mRNA in neonatal and adult muscles as well as in single fibers was done by the deltaC(T) method, with CycA gene as the reference gene. Due to a higher sensitivity than that of a competitive PCR method, we demonstrated that this assay is suitable to study very low level of MHC mRNA expression as developmental MHC in adult muscle and to quantify mRNA from very small samples
    corecore