732 research outputs found
In situ wavelength calibration of the edge CXS spectrometers on JET
A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-PĂ©rot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 Ă…, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction
Effect of toroidal field ripple on plasma rotation in JET
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect
Recommended from our members
Observations of Anisotropic Ion Temperature in the NSTX Edge during RF Heating
A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge with both poloidal and toroidal views. An anisotropic ion temperature is measured during the presence of high-power high-harmonic fast-wave (HHFW) radio-frequency (RF) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations are present and have temperatures of 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively. This bi-modal distribution is observed in both the toroidal and poloidal views (in both He{sup +} and C{sup 2+} ions), and is well correlated with the period of RF power application to the plasma. The temperature of the hot edge ions is observed to increase with the applied RF power, which was scanned between 0 and 4.3 MW. The ion heating mechanism is likely to be ion-Bernstein waves (IBW) from nonlinear decay of the launched HHFW
Conformance relations and hyperproperties for doping detection in time and space
We present a novel and generalised notion of doping cleanness for cyber-physical systems that allows for perturbing the inputs and observing the perturbed outputs both in the time- and value-domains. We instantiate our definition using existing notions of conformance for cyber-physical systems. As a formal basis for monitoring conformance-based cleanness, we develop the temporal logic HyperSTL*, an extension of Signal Temporal Logics with trace quantifiers and a freeze operator. We show that our generalised definitions are essential in a data-driven method for doping detection and apply our definitions to a case study concerning diesel emission tests
Quasi-single helicity spectra in the Madison Symmetric Torus
Evidence of a self-organized collapse towards a narrow spectrum of magnetic instabilities in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] reversed field pinch device is presented. In this collapsed state, dubbed quasi-single helicity (QSH), the spectrum of magnetic modes condenses spontaneously to one dominant mode more completely than ever before observed. The amplitudes of all but the largest of the m=1 modes decrease in QSH states. New results about thermal features of QSH spectra and the identification of global control parameters for their onset are also discussed
- …