84 research outputs found

    An improved method for large scale generation and high-throughput functional characterization of human iPSC-derived microglia

    Get PDF
    Neuroscience drug discovery has faced significant challenges due to restricted access to relevant human cell models and limited translatability of existing preclinical findings to human pathophysiology. Induced pluripotent stem cells (iPSCs) have emerged as a promising solution, offering the potential to generate patient-specific cell types, including in the recent years, iPSC-derived microglia (iMGL). Current methods rely on complex and time-consuming differentiation procedures, leading to considerable batch-to-batch variability consequently hindering the establishment of standardized and reproducible high-throughput functional screening approaches. Addressing these challenges is critical in ensuring the generation of homogenous iMGL populations with consistent functional properties. In this study we describe an improved high-yield protocol for generating iMGL, which allows for increased reproducibility and flexibility in the execution of high-throughput functional screens. We introduce a two-step process in embryoid bodie (EB) maintenance and a stop point allowing for cryopreservation at the hematopoietic progenitor cell (iHPC) stages. Furthermore, we demonstrate inter-operator robustness of this modified protocol in a range of high-throughput functional assays including phagocytosis, lysosomal acidification, chemotaxis, and cytokine release. Our study underscores the importance of quality control checks at various stages of iPSC-differentiation and functional assay set up, highlighting novel workarounds to the existing challenges such as limited yield, flexibility, and reproducibility, all critical in drug discovery

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density

    Get PDF
    Rationale: In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). Objective: To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. Methods: Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category. Results: In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI. Conclusion: TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves

    Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes

    Get PDF
    Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils.We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i 1 μM; F/F0 5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structureinduced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes

    Self-report stress measures to assess stress in adults with mild intellectual disabilities-A scoping review

    Get PDF
    Stress has a major negative impact on the development of psychopathology and contributes to the onset of adverse physical conditions. Timely recognition and monitoring of stress-related problems are therefore important, especially in client populations that are more vulnerable to stress, such as people with mild intellectual disabilities (MID). Recent research on the use of physiological measures to assess stress levels emphasize that, in addition to these measures, self-report instruments are necessary to gain insight into the individual perception and impact of stress on daily life. However, there is no current overview of self-report stress measures that focus on the experience of stress in the present moment or in daily life. To provide an overview of the existing self-report stress measures for clinicians and researchers, a scoping review was conducted. In addition, to advise clinical professionals on the use of self-report measures of stress for people with MID, the results of an expert consultation were used to refine the preliminary findings. A systematic scoping literature search resulted in a total of 13 self-reported stress measures that met the final inclusion criteria, of which three were developed specifically for assessing stress in adults with MID (GAS-ID, LI, and SAS-ID). For each included self-report stress measure, the psychometric quality, assessment procedure, and suitability for adults with MID were reported. These were supplemented by the findings from the expert consultation. Implications for clinical practice on the use of self-report stress measures, particularly for people with MID, are discussed. Recommendations for future research and development are given

    Dynamics of eligibility criteria for central nervous system metastases in non-small cell lung cancer randomized clinical trials over time: A systematic review

    No full text
    Although central nervous system (CNS) metastases frequently occur in patients with non-small cell lung cancer (NSCLC), historically these patients have been excluded from clinical trials. However, due to improving NSCLC prognosis, time to develop CNS metastases increases and information on CNS efficacy of systemic treatment is important. We performed a systematic PubMed review (2000-2020) to describe CNS related eligibility and screening criteria over time. Randomized phase III, and for tyrosine kinase inhibitors (TKIs) also randomized phase II trials enrolling advanced/metastatic NSCLC patients were included. 256/1195 trials were included. In 71 %, CNS metastases were eligible, but in only 3% regardless of symptoms/ treatment. Only 37 % required baseline CNS screening (most often TKI and immunotherapy trials), without significant increase over time. A CNS endpoint was pre-specified in 4%. Conclusion: CNS screening and eligibility criteria are heterogenous across trials, and CNS related endpoints are rare. These criteria and endpoints should be improved and harmonized
    • …
    corecore