113 research outputs found

    Substrate Specificity, Metal Binding Properties, and Spectroscopic Characterization of the DapE-Encoded N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase from \u3cem\u3eHaemophilus influenzae\u3c/em\u3e

    Get PDF
    The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to ∼20% of the Zn(II)-loaded enzyme. The order of the observed kcat values are Co(II) \u3e Zn(II) \u3e Cd(II) \u3e Mn(II) \u3eNi(II) ∼ Cu(II) ∼ Mg(II). DapE was shown to only hydrolyze l,l-N-succinyl-diaminopimelic acid (l,l-SDAP) and was inactive toward d,l-, l,d-, and d,d-SDAP. DapE was also inactive toward several acetylated amino acids as well as d,l-succinyl aminopimelate, which differs from the natural substrate, l,l-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 × 103 times (Kd1 = 0.14 μM vs Kd2 = 300 μM). In addition, an Arrhenius plot was constructed from kcat values measured between 16 and 35 °C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 °C being ΔG⧧ = 64 kJ/mol, ΔH⧧ = 28.5 kJ/mol, and ΔS⧧ = −119 J mol-1 K-1. Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin−spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and the observed divalent metal ion binding properties are discussed with respect to their catalytic roles in SDAP hydrolysis

    Kinetic and Spectroscopic Characterization of the E134A- and E134D-altered \u3cem\u3edapE\u3c/em\u3e-encoded \u3cem\u3eN\u3c/em\u3e-succinyl-l,l-diaminopimelic acid desuccinylase from \u3cem\u3eHaemophilus influenzae\u3c/em\u3e

    Get PDF
    Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.09%), and alanine (0%). Examination of the pH dependence of the kinetic constants k cat and K m for E134D-DapE revealed ionizations at pH 6.4, 7.4, and approximately 9.7. Isothermal titration calorimetry experiments revealed a significant weakening in metal K d values of E134D-DapE. D134 and A134 perturb the second divalent metal binding site significantly more than the first, but both altered enzymes can still bind two divalent metal ions. Structural perturbations of the dinuclear active site of DapE were also examined for two E134-substituted forms, namely E134D-DapE and E134A-DapE, by UV–vis and electron paramagnetic resonance (EPR) spectroscopy. UV–vis spectroscopy of Co(II)-substituted E134D-DapE and E134A-DapE did not reveal any significant changes in the electronic absorption spectra, suggesting that both Co(II) ions in E134D-DapE and E134A-DapE reside in distorted trigonal bipyramidal coordination geometries. EPR spectra of [Co_(E134D-DapE)] and [Co_(E1341A-DapE] are similar to those observed for [CoCo(DapE)] and somewhat similar to the spectrum of [Co(H2O)6]2+ which typically exhibit E/D values of approximately 0.1. Computer simulation returned an axial g-tensor with g (x,y)=2.24 and E/D=0.07; g z was only poorly determined, but was estimated as 2.5–2.6. Upon the addition of a second Co(II) ion to [Co_(E134D-DapE)] and [Co_(E134A-DapE)], a broad axial signal was observed; however, no signals were observed with B 0||B 1 (“parallel mode”). On the basis of these data, E134 is intrinsically involved in the hydrolysis reaction catalyzed by DapE and likely plays the role of a general acid and base

    3D Ordering at the Liquid–Solid Polar Interface of Nanowires

    Get PDF
    The nature of the liquid–solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid–solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic‐scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid–solid interface

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Get PDF
    Background: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution fo

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities

    Prise en compte des pré-soutènements dans le dimensionnement des tunnels

    No full text
    Les méthodes usuelles de calcul des tunnels prenant en compte les phénomènes tridimensionnels et d'interaction sol-structure ont largement évolué récemment. Toutefois, la présence de pré-soutènements, de plus en plus fréquemment utilisés notamment pour les projets en site urbain, reste encore difficile à prendre en compte dans les méthodes existantes. L'article présente les résultats d'études théoriques permettant de proposer une méthodologie de généralisation des approches « convergence-confinement » aux cas de tunnels utilisant les méthodes de pré-soutènements (pré-voûtes, voûtes-parapluies, jet-grouting, etc.)
    corecore