36 research outputs found

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy

    Get PDF
    Hippocampal neural stem/progenitor cells (NSPCs) proliferate and differentiate to generate new neurons across the life span of most mammals, including humans. This process takes place within a characteristic local microenvironment where NSPCs interact with a variety of other cell types and encounter systemic regulatory factors. Within this microenvironment, cell intrinsic gene expression programs are modulated by cell extrinsic signals through complex interactions, in many cases involving short non-coding RNA molecules, such as miRNAs. Here we review the regulation of gene expression in NSPCs by miRNAs and its possible implications for epilepsy, which has been linked to alterations in adult hippocampal neurogenesis

    Glucocorticoid-mediated modulation of morphological changes associated with aging in microglia

    No full text
    Microglia dynamically adapt their morphology and function during increasing age. However, the mechanisms behind these changes are to date poorly understood. Glucocorticoids (GCs) are long known and utilized for their immunomodulatory actions and endogenous GC levels are described to alter with advancing age. We here tested the hypothesis that age-associated elevations in GC levels implicate microglia function and morphology. Our data indicate a decrease in microglial complexity and a concomitant increase in GC levels during aging. Interestingly, enhancing GC levels in young mice enhanced microglial ramifications, while the knockdown of the glucocorticoid receptor expression in old mice aggravated age-associated microglial amoebification. These data suggest that GCs increase ramification of hippocampal microglia and may modulate age-associated changes in microglial morphology

    Development and Validation of a Bayesian Network for Supporting the Etiological Diagnosis of Uveitis

    No full text
    International audienceThe etiological diagnosis of uveitis is complex. We aimed to implement and validate a Bayesian belief network algorithm for the differential diagnosis of the most relevant causes of uveitis. The training dataset (n = 897) and the test dataset (n = 154) were composed of all incident cases of uveitis admitted to two internal medicine departments, in two independent French centers (Lyon, 2003–2016 and Dijon, 2015–2017). The etiologies of uveitis were classified into eight groups. The algorithm was based on simple epidemiological characteristics (age, gender, and ethnicity) and anatomoclinical features of uveitis. The cross-validated estimate obtained in the training dataset concluded that the etiology of uveitis determined by the experts corresponded to one of the two most probable diagnoses in at least 77% of the cases. In the test dataset, this probability reached at least 83%. For the training and test datasets, when the most likely diagnosis was considered, the highest sensitivity was obtained for spondyloarthritis and HLA-B27-related uveitis (76% and 63%, respectively). The respective specificities were 93% and 54%. This algorithm could help junior and general ophthalmologists in the differential diagnosis of uveitis. It could guide the diagnostic work-up and help in the selection of further diagnostic investigations

    Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.

    No full text
    Synchronized activity is common during various physiological operations but can culminate in seizures and consequently in epilepsy in pathological hyperexcitable conditions in the brain. Many types of seizures are not possible to control and impose significant disability for patients with epilepsy. Such intractable epilepsy cases are often associated with degeneration of inhibitory interneurons in the cortical areas resulting in impaired inhibitory drive onto the principal neurons. Recently emerging optogenetic technique has been proposed as an alternative approach to control such seizures but whether it may be effective in situations where inhibitory processes in the brain are compromised has not been addressed. Here we used pharmacological and optogenetic techniques to block inhibitory neurotransmission and induce epileptiform activity in vitro and in vivo. We demonstrate that NpHR-based optogenetic hyperpolarization and thereby inactivation of a principal neuronal population in the hippocampus is effectively attenuating seizure activity caused by disconnected network inhibition both in vitro and in vivo. Our data suggest that epileptiform activity in the hippocampus caused by impaired inhibition may be controlled by optogenetic silencing of principal neurons and potentially can be developed as an alternative treatment for epilepsy

    Left ventricle assist device: when and which patients should we refer?

    Get PDF
    International audienceProgress in the medical treatment of patients with heart failure with systolic dysfunction, cardiac resynchronization therapy, internal cardiac defibrillators and multidisciplinary management programmes has resulted in dramatic improvements in survival and quality of life; however, this progress has led to an increase in the prevalence of advanced heart failure. In the context of organ shortage for cardiac transplantation, the technological developments in left ventricular assist devices, shown in recent positive clinical studies, provide real hope for patients with advanced heart failure. This article summarizes the most recent clinical studies concerning left ventricular assist devices and discusses for whom and when a left ventricular assist device should be proposed

    Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus

    No full text
    Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes include neural stem and precursor cells (NPSC) apoptosis, shortly after their birth, before they produce hippocampal neurons. Here we explored these early phenotypical changes in the DG 3 days after a systemic injection of KA inducing status epilepticus (KA-SE), in mice. We performed a multi-omics experimental setup and analyzed DG tissue samples using proteomics, transcriptomics and microRNA profiling techniques, detecting the expression of 2327 proteins, 13401 mRNAs and 311 microRNAs. We here present a description of how these data were obtained and make them available for further analysis and validation. Our data may help to further identify and characterize molecular mechanisms involved in the alterations induced shortly after KA-SE in the mouse DG
    corecore