39 research outputs found
An Approximation for the rp-Process
Hot (explosive) hydrogen burning or the Rapid Proton Capture Process
(rp-process) occurs in a number of astrophysical environments. Novae and X-ray
bursts are the most prominent ones, but accretion disks around black holes and
other sites are candidates as well. The expensive and often multidimensional
hydro calculations for such events require an accurate prediction of the
thermonuclear energy generation, while avoiding full nucleosynthesis network
calculations. In the present investigation we present an approximation scheme
applicable in a temperature range which covers the whole range of all presently
known astrophysical sites. It is based on the concept of slowly varying
hydrogen and helium abundances and assumes a kind of local steady flow by
requiring that all reactions entering and leaving a nucleus add up to a zero
flux. This scheme can adapt itself automatically and covers situations at low
temperatures, characterized by a steady flow of reactions, as well as high
temperature regimes where a -equilibrium is established.
In addition to a gain of a factor of 15 in computational speed over a full
network calculation, and an energy generation accurate to more than 15 %, this
scheme also allows to predict correctly individual isotopic abundances. Thus,
it delivers all features of a full network at a highly reduced cost and can
easily be implemented in hydro calculations.Comment: 18 pages, LaTeX using astrobib and aas2pp4, includes PostScript
figures; Astrophysical Journal, in press. PostScript source also available at
http://quasar.physik.unibas.ch/preps.htm
The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes
Recent network calculations suggest that a high temperature rp-process could
explain the abundances of light Mo and Ru isotopes, which have long challenged
models of p-process nuclide production. Important ingredients to network
calculations involving unstable nuclei near and at the proton drip line are
-halflives and decay modes, i.e., whether or not -delayed proton
decay takes place. Of particular importance to these network calculation are
the proton-rich isotopes Ag, Ag, Cd and Cd. We
report on recent measurements of -delayed proton branching ratios for
Ag, Ag, and Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International
Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M.
Wiescher, to be published in Nucl.Phys.A. Also available at
ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs
Energy Release on the Surface of a Rapidly Rotating Neutron Star during Disk Accretion: A Thermodynamic Approach
The total energy E of a star as a function of its angular momentum J and mass
M in the Newtonian theory: E = E(J, M) [in general relativity, the
gravitational mass M of a star as a function of its angular momentum J and rest
mass m, M = M(J, m)], is used to determine the remaining parameters (angular
velocity, equatorial radius, chemical potential, etc.) in the case of rigid
rotation. Expressions are derived for the energy release during accretion onto
a cool (with constant entropy), rapidly rotating neutron star (NS) in the
Newtonian theory and in general relativity. A separate analysis is performed
for the cases where the NS equatorial radius is larger and smaller than the
radius of the marginally stable orbit in the disk plane. An approximate formula
is proposed for the NS equatorial radius for an arbitrary equation of state,
which matches the exact one at J = 0.Comment: 12 pages, 0 figures (Astronomy Letters in press
Energy Release During Disk Accretion onto a Rapidly Rotating Neutron Star
The energy release L_s on the surface of a neutron star (NS) with a weak
magnetic field and the energy release L_d in the surrounding accretion disk
depend on two independent parameters that determine its state (for example,
mass M and cyclic rotation frequency f) and is proportional to the accretion
rate. We derive simple approximation formulas illustrating the dependence of
the efficiency of energy release in an extended disk and in a boundary layer
near the NS surface on the frequency and sense of rotation for various NS
equations of state. Such formulas are obtained for the quadrupole moment of a
NS, for a gap between its surface and a marginally stable orbit, for the
rotation frequency in an equatorial Keplerian orbit and in the marginally
stable circular orbit, and for the rate of NS spinup via disk accretion. In the
case of NS and disk counterrotation, the energy release during accretion can
reach . The sense of NS rotation is a factor that strongly
affects the observed ratio of nuclear energy release during bursts to
gravitational energy release between bursts in X-ray bursters. The possible
existence of binary systems with NS and disk counterrotation in the Galaxy is
discussed. Based on the static criterion for stability, we present a method of
constructing the dependence of gravitational mass M on Kerr rotation parameter
j and on total baryon mass (rest mass) m for a rigidly rotating neutron star.
We show that all global NS characteristics can be expressed in terms of the
function M(j, m) and its derivatives.Comment: 42 pages, 12 figures, to appear in Astronomy Letters, 2000, v.26,
p.69
Estimating the burden of antimicrobial resistance: a systematic literature review.
Background: Accurate estimates of the burden of antimicrobial resistance (AMR) are needed to establish the magnitude of this global threat in terms of both health and cost, and to paramaterise cost-effectiveness evaluations of interventions aiming to tackle the problem. This review aimed to establish the alternative methodologies used in estimating AMR burden in order to appraise the current evidence base. Methods: MEDLINE, EMBASE, Scopus, EconLit, PubMed and grey literature were searched. English language studies evaluating the impact of AMR (from any microbe) on patient, payer/provider and economic burden published between January 2013 and December 2015 were included. Independent screening of title/abstracts followed by full texts was performed using pre-specified criteria. A study quality score (from zero to one) was derived using Newcastle-Ottawa and Philips checklists. Extracted study data were used to compare study method and resulting burden estimate, according to perspective. Monetary costs were converted into 2013 USD. Results: Out of 5187 unique retrievals, 214 studies were included. One hundred eighty-seven studies estimated patient health, 75 studies estimated payer/provider and 11 studies estimated economic burden. 64% of included studies were single centre. The majority of studies estimating patient or provider/payer burden used regression techniques. 48% of studies estimating mortality burden found a significant impact from resistance, excess healthcare system costs ranged from non-significance to 21,832 per case to over $3 trillion in GDP loss. Median quality scores (interquartile range) for patient, payer/provider and economic burden studies were 0.67 (0.56-0.67), 0.56 (0.46-0.67) and 0.53 (0.44-0.60) respectively. Conclusions: This study highlights what methodological assumptions and biases can occur dependent on chosen outcome and perspective. Currently, there is considerable variability in burden estimates, which can lead in-turn to inaccurate intervention evaluations and poor policy/investment decisions. Future research should utilise the recommendations presented in this review. Trial registration: This systematic review is registered with PROSPERO (PROSPERO CRD42016037510)
HV2112, a Thorne–Żytkow object or a super asymptotic giant branch star
The very bright red star HV2112 in the Small Magellanic Cloud could be a massive Thorne-A >> ytkow object (TA >> O), a supergiant-like star with a degenerate neutron core. With a luminosity of over 10(5) L-aS (TM), it could also be a super asymptotic giant branch (SAGB) star, a star with an oxygen/neon core supported by electron degeneracy and undergoing thermal pulses with third dredge up. Both TA >> Os and SAGB stars are expected to be rare. Abundances of heavy elements in HV2112's atmosphere, as observed to date, do not allow us to distinguish between the two possibilities based on the latest models. Molybdenum and rubidium can be enhanced by both the irp-process in a TA >> O or by the s-process in SAGB stars. Lithium can be generated by hot bottom burning at the base of the convective envelope in either. HV2112's enhanced calcium could thus be the key determinant. Neither SAGB stars nor TA >> Os are known to be able to synthesize their own calcium but it may be possible to produce it in the final stages of the process that forms a TA >> O, when the degenerate electron core of a giant star is tidally disrupted by a neutron star. Hence, it is more likely, on a fine balance, that HV2112 is indeed a genuine TA >> O