26 research outputs found

    Attention mechanisms in the CHREST cognitive architecture

    Get PDF
    In this paper, we describe the attention mechanisms in CHREST, a computational architecture of human visual expertise. CHREST organises information acquired by direct experience from the world in the form of chunks. These chunks are searched for, and verified, by a unique set of heuristics, comprising the attention mechanism. We explain how the attention mechanism combines bottom-up and top-down heuristics from internal and external sources of information. We describe some experimental evidence demonstrating the correspondence of CHRESTā€™s perceptual mechanisms with those of human subjects. Finally, we discuss how visual attention can play an important role in actions carried out by human experts in domains such as chess

    Long-term N-addition alters the community structure of functionally important N-cycling soil microorganisms across global grasslands

    Get PDF
    Anthropogenic nitrogen (N) input is known to alter the soil microbiome, but how N enrichment influences the abundance, alpha-diversity and community structure of N-cycling functional microbial communities in grasslands remains poorly understood. Here, we collected soils from plant communities subjected to up to 9 years of annual N-addition (10 g N māˆ’2 per year using urea as a N-source) and from unfertilized plots (control) in 30 grasslands worldwide spanning a large range of climatic and soil conditions. We focused on three key microbial groups responsible for two essential processes of the global N cycle: N2 fixation (soil diazotrophs) and nitrification (AOA: ammonia-oxidizing archaea and AOB: ammonia-oxidizing bacteria). We targeted soil diazotrophs, AOA and AOB using Illumina MiSeq sequencing and measured the abundance (gene copy numbers) using quantitative PCR. N-addition shifted the structure of the diazotrophic communities, although their alpha-diversity and abundance were not affected. AOA and AOB responded differently to N-addition. The abundance and alpha-diversity of AOB increased, and their community structure shifted with N-addition. In contrast, AOA were not affected by N-addition. AOA abundance outnumbered AOB in control plots under conditions of low N availability, whereas N-addition favoured copiotrophic AOB. Overall, N-addition showed a low impact on soil diazotrophs and AOA while effects for AOB communities were considerable. These results reveal that long-term N-addition has important ecological implications for key microbial groups involved in two critical soil N-cycling processes. Increased AOB abundance and community shifts following N-addition may change soil N-cycling, as larger population sizes may promote higher rates of ammonia oxidation and subsequently increase N loss via gaseous and soil N-leaching. These findings bring us a step closer to predicting the responses and feedbacks of microbial-mediated N-cycling processes to long-term anthropogenic N-addition in grasslands

    Dominant native and non-native graminoids differ in key leaf traits irrespective of nutrient availability

    Get PDF
    Aim: Nutrient enrichment is associated with plant invasions and biodiversity loss. Functional trait advantages may predict the ascendancy of invasive plants following nutrient enrichment but this is rarely tested. Here, we investigate (a) whether dominant native and non-native plants differ in important morphological and physiological leaf traits, (b) how their traits respond to nutrient addition, and (c) whether responses are consistent across functional groups. Location: Australia, Europe, North America and South Africa. Time period: 2007ā€“2014. Major taxa studied: Graminoids and forbs. Methods: We focused on two types of leaf traits connected to resource acquisition: morphological features relating to light-foraging surfaces and investment in tissue (specific leaf area, SLA) and physiological features relating to internal leaf chemistry as the basis for producing and utilizing photosynthate. We measured these traits on 503 leaves from 151 dominant species across 27 grasslands on four continents. We used an identical nutrient addition treatment of nitrogen (N), phosphorus (P) and potassium (K) at all sites. Sites represented a broad range of grasslands that varied widely in climatic and edaphic conditions. Results: We found evidence that non-native graminoids invest in leaves with higher nutrient concentrations than native graminoids, particularly at sites where native and non-native species both dominate. We found little evidence that native and non-native forbs differed in the measured leaf traits. These results were consistent in natural soil fertility levels and nutrient-enriched conditions, with dominant species responding similarly to nutrient addition regardless of whether they were native or non-native. Main conclusions: Our work identifies the inherent physiological trait advantages that can be used to predict non-native graminoid establishment, potentially because of higher efficiency at taking up crucial nutrients into their leaves. Most importantly, these inherent advantages are already present at natural soil fertility levels and are maintained following nutrient enrichment

    Risk factors for discontinuing drug therapy among children with ADHD

    No full text
    Compliance with drug therapy is of major concern to clinicians as well as policy makers since uncontrolled symptoms due to noncompliance present health risks for patients and may lead to social costs. Noncompliance comes in the form of skipped dosages as well as discontinuation well before a clinician deems it appropriate. The problem is especially severe in behavioral disorders among children where the symptoms can last well beyond adolescence. We use pharmacy dispensing and clinical diagnosis data on children diagnosed with attention-deficit hyperactivity disorder (ADHD) and who are on ADHD-related medications. The paper shows how the pharmacy refill data fit naturally into a discrete time hazard rate framework, and then compares estimates from alternative definitions of discontinuation. We use a long follow-up period (up to 6 years), allow for a flexible duration dependence and account for unobserved heterogeneity. The expected duration is about 18 months with significant differences across race, gender, copays, medication switching, and seasonality. We find that African-American, Hispanic and, Asian children are about 39% more likely, on average, to quit therapy in a given month than white children. Similarly, compared to a child that initiates drug therapy at age 9, a child that starts therapy at age 10 is 26.4% more likely to discontinue at any given time. Earlier literature using the hazard approach reports smaller associations between these covariates and durations. We show that this could be because of ignored unobserved heterogeneity, use of a relatively short follow-up study design and monotonic duration dependence. Finally, our results are of particular relevance to clinicians as well as to policy makers given recent changes in federal and state policies that may make early detection and diagnosis of ADHD among children less likely

    Dominant native and non-native graminoids differ in key leaf traits irrespective of nutrient availability

    No full text
    Aim: Nutrient enrichment is associated with plant invasions and biodiversity loss. Functional trait advantages may predict the ascendancy of invasive plants following nutrient enrichment but this is rarely tested. Here, we investigate (a) whether dominant native and non-native plants differ in important morphological and physiological leaf traits, (b) how their traits respond to nutrient addition, and (c) whether responses are consistent across functional groups. Location: Australia, Europe, North America and South Africa. Time period: 2007ā€“2014. Major taxa studied: Graminoids and forbs. Methods: We focused on two types of leaf traits connected to resource acquisition: morphological features relating to light-foraging surfaces and investment in tissue (specific leaf area, SLA) and physiological features relating to internal leaf chemistry as the basis for producing and utilizing photosynthate. We measured these traits on 503 leaves from 151 dominant species across 27 grasslands on four continents. We used an identical nutrient addition treatment of nitrogen (N), phosphorus (P) and potassium (K) at all sites. Sites represented a broad range of grasslands that varied widely in climatic and edaphic conditions. Results: We found evidence that non-native graminoids invest in leaves with higher nutrient concentrations than native graminoids, particularly at sites where native and non-native species both dominate. We found little evidence that native and non-native forbs differed in the measured leaf traits. These results were consistent in natural soil fertility levels and nutrient-enriched conditions, with dominant species responding similarly to nutrient addition regardless of whether they were native or non-native. Main conclusions: Our work identifies the inherent physiological trait advantages that can be used to predict non-native graminoid establishment, potentially because of higher efficiency at taking up crucial nutrients into their leaves. Most importantly, these inherent advantages are already present at natural soil fertility levels and are maintained following nutrient enrichment
    corecore