124 research outputs found

    Genetic Testing and FOX News

    Get PDF
    Genetic testing is transforming kidney care, arguably with similar impact as the adoption of kidney biopsies in the 1950s. It is incumbent on nephrologists to teach the genetics of kidney disease and the accessibility of genetic testing. Proper usage of genetic testing can avoid “diagnostic odysseys” with multiple nonspecific investigations, some of them invasive like a kidney biopsy and repeated consultations with multiple different specialists [1]

    Inherited Disorders of Water Handling

    Get PDF
    Under normal circumstances, about 90% of the 180 L/day glomerular filtrate is constitutively reabsorbed in the proximal tubule and descending limb of Henle’s loop. According to the needs, the remaining 10% of the fluid is reabsorbed in the collecting duct by a tightly regulated process under control of arginine vasopressin (AVP). After binding of AVP to arginine vasopressin type 2 receptors (AVPR2) in the basolateral membrane of collecting duct cells, aquaporin-2 (AQP2) water channels are inserted into the luminal membrane of these cells, allowing water reabsorption and urine concentration. Disorders of water handling are characterized by disturbances of this AVP-regulated system. In congenital nephrogenic diabetes insipidus (NDI), the kidney cannot concentrate urine in response to AVP, as a result of loss-of-function mutations in genes encoding AVPR2 and AQP2, resulting in polyuria and polydipsia. In recent years, extensive research has led to increased understanding of the cellular defects in NDI, with important implications for future development of targeted treatment of the disorder, with hope for better outcomes in comparison to the conventional symptomatic therapy. The very rare nephrogenic syndrome of inappropriate antidiuresis (NSIAD), caused by gain-of-function mutations in the gene encoding AVPR2, is the mirror image of NDI. In this disorder, urinary dilution is impaired, independent of the presence or absence of AVP. In this chapter, the focus will be on the physiology of water handling in the collecting duct and on its disturbances in congenital NDI. The clinical details, differential diagnosis, genetics, and conventional and possible future therapies of NDI will be discussed in detail.</p

    Identification and Characterization of an Activating F229V Substitution in the V2 Vasopressin Receptor in an Infant with NSIAD

    Get PDF
    Gain-of-function mutations in the gene encoding the V2 vasopressin receptor (V2R) cause nephrogenic syndrome of inappropriate antidiuresis. To date, reported mutations lead to the substitution of arginine 137 by either a cysteine or leucine (R137C/L). Here, we describe a 3-month-old hyponatremic infant found to have a phenylalanine 229 to valine (F229V) substitution in V2R. Characterization of this substitution in vitro revealed that it leads to high constitutive activity of the receptor, compatible with spontaneous antidiuresis. In contrast to R137C/L mutant receptors, F229V receptors do not undergo spontaneous desensitization, which results in sustained, high basal activity. Notably, the V2R-selective inverse agonists tolvaptan and satavaptan completely silenced the constitutive signaling activity of the F229V mutant receptor, indicating that this substitution does not lock the receptor in an irreversible active state. Thus, inverse agonists might prove to be effective therapies for treating patients with this or other spontaneously activating mutations that do not lock the V2R in its active state. These results emphasize the importance of genetic testing and the functional characterization of mutant receptors for patients with nephrogenic syndrome of inappropriate antidiuresis because the results might inform treatment decisions

    Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus Evidence for a pre-cyclic AMP V2 receptor defective mechanism

    Get PDF
    Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. We recently showed that the administration of the antidiuretic V2 specific agonist, l-desamino[8-D-arginine]vasopressin (dDAVP), to seven male patients with congenital nephrogenic diabetes insipidus (CNDI) did not cause a decrease in blood pressure nor an increase in plasma renin activity or factor VIIIc or von Willebrand factor release. In normal subjects, plasma renin activity, coagulation factors and plasma cyclic AMP are stimulated not only by dDAVP but also by the administration of epinephrine. In the present study, we measured tissue plasminogen activator (activity and antigenicity), von Willebrand factor multimers, plasma and urinary cyclic AMP concentrations following dDAVP or epinephrine administration. We infused epinephrine into three male patients with CNDI. Factor VIIIc and tissue plasminogen activator augmented by 75 to 100% and von Willebrand Factor multimers were increased; plasma renin activity and plasma cyclic AMP concentration increased by 200%. None of these values changed when the same subjects as well as eleven other male patients with CNDI received dDAVP. Furthermore, dDAVP administration increased plasma cyclic AMP concentrations in normal subjects, but not in 14 male patients with CNDI. These results demonstrate the specificity of the extrarenal V2 receptor defect expressed in our patients. The lack of a plasma cyclic AMP response to the administration of dDAVP would suggest an altered pre-cyclic AMP stimulation mechanism

    Oral Migalastat HCl Leads to Greater Systemic Exposure and Tissue Levels of Active α-Galactosidase A in Fabry Patients when Co-Administered with Infused Agalsidase.

    Get PDF
    UnlabelledMigalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.Trial registrationClinicalTrials.gov NCT01196871

    Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus

    Get PDF
    Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine. Here, we report a frame-shift mutation in AQP2 causing dominant NDI. This AQP2 mutant is a functional water channel when expressed in Xenopus oocytes. However, expressed in polarized renal cells, it is misrouted to the basolateral instead of apical plasma membrane. Additionally, this mutant forms heterotetramers with wild-type AQP2 and redirects this complex to the basolateral surface. The frame shift induces a change in the COOH terminus of AQP2, creating both a leucine- and a tyrosine-based motif, which cause the reversed sorting of AQP2. Our data reveal a novel cellular phenotype in dominant NDI and show that dominance of basolateral sorting motifs in a mutant subunit can be the molecular basis for disease

    Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.

    Get PDF
    Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415

    Long-term follow-up of renal function in patients treated with migalastat for Fabry disease

    Get PDF
    The effect of migalastat on long-term renal outcomes in enzyme replacement therapy (ERT)-naive and ERT-experienced patients with Fabry disease is not well defined. An integrated posthoc analysis of the phase 3 clinical trials and open-label extension studies was conducted to evaluate long-term changes in renal function in patients with Fabry disease and amenable GLA variants who were treated with migalastat for ≥2 years during these studies. The analysis included ERT-naive (n = 36 [23 females]; mean age 45 years; mean baseline estimated glomerular filtration rate (eGFR), 91.4 mL/min/mL/1.73 m 2) and ERT-experienced (n = 42 [24 females]; mean age, 50 years; mean baseline eGFR, 89.2 mL/min/1.73m 2) patients with amenable variants who received migalastat 123 mg every other day for ≥2 years. The annualized rate of change from baseline to last observation in estimated glomerular filtration rate using the Chronic Kidney Disease Epidemiology Collaboration equation (eGFR) was calculated by both simple linear regression and a random coefficient model. In ERT-naive patients, mean annualized rates of change from baseline in eGFR were − 1.6 mL/min/1.73 m 2 overall and − 1.8 mL/min/1.73 m 2 and − 1.4 mL/min/1.73 m 2 in male and female patients, respectively, as estimated by simple linear regression. In ERT-experienced patients, mean annualized rates of change from baseline in eGFR were − 1.6 mL/min/1.73 m 2 overall and − 2.6 mL/min/1.73 m 2 and − 0.8 mL/min/1.73 m 2 in male and female patients, respectively. Mean annualized rate of change in eGFR in ERT-naive patients with the classic phenotype (defined by white blood cell alpha galactosidase A [α-Gal A] activity of <3% of normal and multiorgan system involvement) was −1.7 mL/min/1.73 m 2. When calculated using the random coefficient model, which adjusted for sex, age, and baseline renal function, the annualized eGFR change was minimal (mean: −0.1 and 0.1 mL/min/1.73 m 2 in ERT-naive and ERT-experienced patients, respectively). In conclusion, patients with Fabry disease and amenable GLA variants receiving long-term migalastat treatment (≤8.6 years) maintained renal function irrespective of treatment status, sex, or phenotype
    corecore