282 research outputs found

    Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis

    Get PDF
    Conditioning-like infarct limitation by enhanced level of hydrogen sulfide (H2S) has been demonstrated in many animal models of myocardial ischemia/reperfusion injury (MIRI) in vivo. We sought to evaluate the effect of H2S on myocardial infarction across in vivo pre-clinical studies of MIRI using a comprehensive systematic review followed by meta-analysis. Embase, Pubmed and Web of Science were searched for pre-clinical investigation of the effect of H2S on MIRI in vivo. Retained records (6031) were subjected to our pre-defined inclusion criteria then were objectively critiqued. Thirty-two reports were considered eligible to be included in this study and were grouped, based on the time of H2S application, into preconditioning and postconditioning groups. Data were pooled using random effect meta-analysis. We also investigated the possible impact of different experimental variables and the risk of bias on the observed effect size. Preconditioning with H2S (n = 23) caused a significant infarct limitation of − 20.25% (95% CI − 25.02, − 15.47). Similarly, postconditioning with H2S (n = 40) also limited infarct size by − 21.61% (95% CI − 24.17, − 19.05). This cardioprotection was also robust and consistent following sensitivity analyses where none of the pre-defined experimental variables had a significant effect on the observed infarct limitation. H2S shows a significant infarct limitation across in vivo pre-clinical studies of MIRI which include data from 825 animals. This infarct-sparing effect is robust and consistent when H2S is applied before ischemia or at reperfusion, independently on animal size or sulfide source. Validating this infarct limitation using large animals from standard medical therapy background and with co-morbidities should be the way forward

    The Regulation of Pulmonary Immunity

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.No evidence has emerged which suggests that the principles of immunity derived from studies on cells from other body sites are contradicted in the lung and its associated lymphoid tissue. What is clear, however, is that the environment dictates the types of cells, their relationship to one another, and what perturbing events will set in motion either the development of an "active" immune response or tolerance. Investigating mechanisms for the development of lung immunity has increased our understanding of how human diseases develop and is continuing to suggest new ways to manipulate pulmonary immune responses. Demonstration that lung cells regulate both nonspecific inflammation and immunity through the expression of adhesion molecules and the secretion of cytokines offers hope for ways to design more effective vaccines, enhance microbial clearance in immunosuppressed hosts, and to suppress manifestations of immunologically mediated lung disease. Important lung diseases targeted for intensive research efforts in the immediate future are tuberculosis, asthma, and fibrotic lung disease. Perhaps even the common cold might be conquered. Considering the pace of current research on lung immunity, it may not be too ambitious to predict that these diseases may be conquered in the next decade

    Apoptosis during chick inner ear development: some observations by TEM and TUNEL techniques.

    Get PDF
    In order to clarify the occurrence, distribution and possible role of apoptosis during inner ear development, the ultrastructural aspects (by TEM) (at 9-19 incubation day and 1 day after hatching) and the distribution of the apoptotic phenomenon (by the TdTmediated dUTP nick end-labeling technique), were studied in the crista ampullaris of chick embryo at 5-19 days of incubation to hatching and of postnatal 1-day old chick. We found, in the sensorial epithelium, dark supporting cells in chick embryos and mainly dark hair cells in postnatal chicks, both with ultrastructural features consistent with those of apoptosis. The presence of apoptotic phenomena was confirmed by the TUNEL technique. According to our findings, it is hypothesized that apoptosis in the inner ear may be involved: 1) at first, in macroscopic remodelling of the membranous labyrinth in early developmental stages, 2) later, in the correct differentiation of the hair and of the supporting cells, leading to characteristic cellular pattern formation and 3) finally, in physiological cell turnover of the postnatal chicken sensorial epithelium of the crista

    NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size

    Get PDF
    Aims Guanylyl cyclase-cyclic guanosine monophosphate signalling plays an important role in endogenous cardioprotective signalling. The aim was to assess the potential of direct pharmacological activation and stimulation of soluble guanylyl cyclase, targeting different redox states of the enzyme, to limit myocardial necrosis during early reperfusion. Methods and results Rat isolated hearts were subjected to reversible left coronary artery occlusion (ischaemia-reperfusion) and infarct size was assessed by the tetrazolium staining technique. Administration during early reperfusion of BAY 41-2272, an NO-independent, haem-dependent stimulator of soluble guanylyl cyclase targeting the reduced state, or BAY 60-2770, an NO-independent, haem-independent activator targeting the oxidized state, significantly limited infarct size. Inhibition of NO synthesis did not abrogate this protection, but exogenous perfusion of NO with BAY 41-2272 produced a synergistic effect. The haem site oxidiser, ODQ abrogated the protection afforded by BAY 41-2272 but potentiated the protection afforded by BAY 60-2770. Targeting both the reduced and oxidized forms of sGC together did not afford additive protection. Conclusions Targeting either reduced or oxidized forms of sGC during early reperfusion affords cardioprotection, providing support for the concept that direct sGC manipulation at reperfusion has therapeutic potential for the management of acute myocardial infarction

    In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring

    Get PDF
    The impact of transient ischemic-hypoxemic insults on the developing fetal brain is poorly understood despite evidence suggesting an association with neurodevelopmental disorders such as schizophrenia and autism. To address this, we designed an aberrant uterine hypercontractility paradigm with oxytocin to better assess the consequences of acute, but transient, placental ischemia-hypoxemia in term pregnant rats. Using MRI, we confirmed that oxytocin-induced aberrant uterine hypercontractility substantially compromised uteroplacental perfusion. This was supported by the observation of oxidative stress and increased lactate concentration in the fetal brain. Genes related to oxidative stress pathways were significantly upregulated in male, but not female, offspring 1 hour after oxytocin-induced placental ischemia-hypoxemia. Persistent upregulation of select mitochondrial electron transport chain complex proteins in the anterior cingulate cortex of adolescent male offspring suggested that this sex-specific effect was enduring. Functionally, offspring exposed to oxytocin-induced uterine hypercontractility showed male-specific abnormalities in social behavior with associated region-specific changes in gene expression and functional cortical connectivity. Our findings, therefore, indicate that even transient but severe placental ischemia-hypoxemia could be detrimental to the developing brain and point to a possible mitochondrial link between intrauterine asphyxia and neurodevelopmental disorders

    Design and characterization of superpotent bivalent ligands targeting oxytocin receptor dimers via a channel-like structure

    Get PDF
    Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers

    Latest Development of Electropolishing Optimization for 650 MHz Niobium Cavity

    Full text link
    Electropolishing (EP) of 1.3 GHz niobium superconducting RF cavities is conducted to achieve a desired smooth and contaminant-free surface that yields good RF performance. Achieving a smooth surface of a large-sized elliptical cavity with the standard EP conditions was found to be challenging. This work aimed to conduct a systematic parametric EP study to understand the effects of various EP parameters on the surface of 650 MHz niobium cavities used in the Proton Improvement Plan-II (PIP-II) linear accelerator. Parameters optimized in this study provided a smooth surface of the cavities. The electropolished cavity showed significantly a higher accelerating gradient meeting baseline requirement and qualified for further surface treatment to improve the cavity quality factor.Comment: SRF202
    corecore