98 research outputs found

    Territoires et enjeux du développement régional

    Get PDF

    Intravoxel Incoherent Motion Metrics as Potential Biomarkers for Survival in Glioblastoma.

    Get PDF
    Intravoxel incoherent motion (IVIM) is an MRI technique with potential applications in measuring brain tumor perfusion, but its clinical impact remains to be determined. We assessed the usefulness of IVIM-metrics in predicting survival in newly diagnosed glioblastoma. Fifteen patients with glioblastoma underwent MRI including spin-echo echo-planar DWI using 13 b-values ranging from 0 to 1000 s/mm2. Parametric maps for diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were generated for contrast-enhancing regions (CER) and non-enhancing regions (NCER). Regions of interest were manually drawn in regions of maximum f and on the corresponding dynamic susceptibility contrast images. Prognostic factors were evaluated by Kaplan-Meier survival and Cox proportional hazards analyses. We found that fCER and D*CER correlated with rCBFCER. The best cutoffs for 6-month survival were fCER>9.86% and D*CER>21.712 x10-3mm2/s (100% sensitivity, 71.4% specificity, 100% and 80% positive predictive values, and 80% and 100% negative predictive values; AUC:0.893 and 0.857, respectively). Treatment yielded the highest hazard ratio (5.484; 95% CI: 1.162-25.88; AUC: 0.723; P = 0.031); fCER combined with treatment predicted survival with 100% accuracy. The IVIM-metrics fCER and D*CER are promising biomarkers of 6-month survival in newly diagnosed glioblastoma

    Combined Small Interfering RNA Therapy and In Vivo Magnetic Resonance Imaging in Islet Transplantation

    Get PDF
    OBJECTIVE Recent advances in human islet transplantation are hampered by significant graft loss shortly after transplantation and inability to follow islet fate directly. Both issues were addressed by utilizing a dual-purpose therapy/imaging small interfering RNA (siRNA)-nanoparticle probe targeting apoptotic-related gene caspase-3. We expect that treatment with the probe would result in significantly better survival of transplanted islets, which could be monitored by in vivo magnetic resonance imaging (MRI). RESEARCH DESIGN AND METHODS We synthesized a probe consisting of therapeutic (siRNA to human caspase-3) and imaging (magnetic iron oxide nanoparticles, MN) moieties. In vitro testing of the probe included serum starvation of the islets followed by treatment with the probe. Caspase-3 gene silencing and protein expression were determined by RT-PCR and Western blot, respectively. In vivo studies included serial MRI of NOD-SCID mice transplanted with MN-small interfering (si)Caspase-3–labeled human islets under the left kidney capsule and MN-treated islets under the right kidney capsule. RESULTS Treatment with MN-siCaspase-3 probe resulted in decrease of mRNA and protein expression in serum-starved islets compared with controls. In vivo MRI showed that there were significant differences in the relative volume change between MN-siCaspase-3–treated grafts and MN-labeled grafts. Histology revealed decreased caspase-3 expression and cell apoptosis in MN-siCaspase-3–treated grafts compared with the control side. CONCLUSIONS Our data show the feasibility of combining siRNA therapy and in vivo monitoring of transplanted islets in mice. We observed a protective effect of MN-siCaspase-3 in treated islets both in vitro and in vivo. This study could potentially aid in increasing the success of clinical islet transplantation

    Expression of the NH2-Terminal Fragment of RasGAP in Pancreatic β-Cells Increases Their Resistance to Stresses and Protects Mice From Diabetes

    Get PDF
    OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools

    Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide

    Get PDF
    During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide's free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins

    Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin

    Get PDF
    Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotypes and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99–1.67; Pvalue = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06–1.75; Pvalue = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12–1.61; Pvalue = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin

    Visualizing the Reaction Coordinate of an O-GlcNAc Hydrolase

    Get PDF
    N-Acetylglucosamine β-O-linked to serine and threonine residues of nucleocytoplasmic proteins (O-GlcNAc) has been linked to neurodegeneration, cellular stress response, and transcriptional regulation. Removal of O-GlcNAc is catalyzed by O-GlcNAcase (OGA) using a substrate-assisted catalytic mechanism. Here we define the reaction coordinate using chemical approaches and directly observe both a Michaelis complex and the oxazoline intermediate

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed
    corecore