27 research outputs found

    Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils

    Get PDF
    The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis

    Receptor tyrosine kinase signaling mechanisms: Devolving TrkA responses with phosphoproteomics

    No full text
    Receptor tyrosine kinases (RTKs) function through protein kinase entities located in the intracellular domain of each protomer. Following activation by ligand binding, they selectively form phosphotyrosine residues by autocatalytic modification. Some of these sites are involved in maintaining the active conformation of the kinase, while others become docking sites for various adaptor/effector/scaffold proteins, which, after complexing with the receptor, then initiate further responses through cascades of post-translational modifications and the generation of lipid second messengers. Although there is substantial overlap in the pathways and activities stimulated by this superfamily, the molecular features of the endodomains of the sub-families and the moieties that they interact with to perpetrate their signals are surprisingly distinct, which may play a significant role in the regulation and responses of the individual RTK types. Some use large scaffold proteins as the basis for most, if not all, of their signal-generating interactions, while others have numerous receptor endodomain phosphotyrosine sites that are quite overlapping in specificity. The members of the Trk family of receptors each have several tyrosine residues that are phosphorylated following stimulation, including those in the kinase activation loop, but there are only two established sites (Y490 and Y785 on TrkA) that are known to be directly involved in signal propagation. Taking advantage of this limited repertoire of docking sites, we have applied phosphoproteomic methods to dissect the signaling responses of both the native protein and derivatives that have had these two sites modified. Interestingly, a clear subset that was not dependent on either docking site was identified. A comparison with a similar set of data for EGFR indicates a considerable degree of similarity in the downstream signaling profile between these two RTKs

    Dissecting the Roles of Tyrosines 490 and 785 of TrkA Protein in the Induction of Downstream Protein Phosphorylation Using Chimeric Receptors*

    No full text
    Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction. Taking advantage of this limited repertoire of docking sites and the availability of PC12 cell lines stably transfected with chimeric receptors composed of the extracellular domain of the PDGF receptor and the transmembrane and intracellular domains of TrkA, the downstream TrkA-induced phosphoproteome was assessed for the "native" receptor and mutants lacking Tyr-490 or both Tyr-490 and Tyr-785. Basal phosphorylation levels were compared with those formed after 20 min of stimulation with PDGF. Several thousand phosphopeptides were identified after TiO2 enrichment, and many were up- or down-regulated by receptor activation. The modified proteins in the native sample contained many of the well established participants in TrkA signaling. The results from the mutant receptors allowed grouping of these downstream targets by their dependence on the two characterized docking site(s). A clear subset that was not dependent on either Tyr-490 or Tyr-785 emerged, providing direct evidence that there are other sites on TrkA that are involved in downstream signaling

    NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling.

    No full text
    Nerve growth factor (NGF) and its precursor (proNGF) are primarily considered as regulators of neuronal function that induce their responses via the tyrosine kinase receptor TrkA and the pan-neurotrophin receptor p75NTR. It has been generally held that NGF exerts its effects primarily through TrkA, inducing a cascade of tyrosine kinase-initiated responses, while proNGF binds more strongly to p75NTR. When this latter entity interacts with a third receptor, sortilin, apoptotic responses are induced in contrast to the survival/differentiation associated with the other two. Recent studies have outlined portions of the downstream phosphoproteome of TrkA in the neuronal PC12 cells and have clarified the contribution of individual docking sites in the TrkA endodomain. The patterns observed showed a similarity with the profile induced by the epidermal growth factor receptor, which is extensively associated with oncogenesis. Indeed, as with other neurotrophic factors, the distribution of TrkA and p75NTR is not limited to neuronal tissue, thus providing an array of targets outside the nervous systems. One such source is breast cancer cells, in which NGF and proNGF stimulate breast cancer cell survival/growth and enhance cell invasion, respectively. This latter activity is exerted via TrkA (as opposed to p75NTR) in conjunction with sortilin. Another tissue overexpressing proNGF is prostate cancer and here the ability of cancer cells to induce neuritogenesis has been implicated in cancer progression. These studies show that the non-neuronal functions of proNGF/NGF are likely integrated with their neuronal activities and point to the clinical utility of these growth factors and their receptors as biomarkers and therapeutic targets for metastasis and cancer pain

    Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer

    No full text
    Item does not contain fulltextBACKGROUND: The prevalence of Streptococcus gallolyticus subsp gallolyticus ( Streptococcus bovis biotype I) endocarditis is in general low but very often linked to colorectal cancer. Therefore, this study aimed to reveal the virulence characteristics that distinguish this opportunistic pathogen from a panel of (closely related) intestinal bacteria. METHODS: The route of infection was reconstructed in vitro with adhesion, invasion, and translocation assays on differentiated Caco-2 cells. Furthermore, cellular immune responses upon infection and bacterial biofilm formation were analyzed in a comparative manner. RESULTS: S. gallolyticus subsp gallolyticus strains were demonstrated to have a relative low adhesiveness and could not internalize epithelial cells. However, these bacteria were uniquely able to paracellularly cross a differentiated epithelium without inducing epithelial interleukin 8 or 1beta responses. Importantly, they had an outstanding ability to form biofilms on collagen-rich surfaces, which in vivo are found at damaged heart valves and (pre)cancerous sites with a displaced epithelium. CONCLUSIONS: Together, these data show that S. gallolyticus subsp gallolyticus has a unique repertoire of virulence factors that facilitate infection through (pre)malignant colonic lesions and subsequently can provide this bacterium with a competitive advantage in (1) evading the innate immune system and (2) forming resistant vegetations at collagen-rich sites in susceptible patients with colorectal cancer
    corecore