5,520 research outputs found

    Ideal Bandgap in a 2D Ruddlesden-Popper Perovskite Chalcogenide for Single-junction Solar Cells

    Full text link
    Transition metal perovskite chalcogenides (TMPCs) are explored as stable, environmentally friendly semiconductors for solar energy conversion. They can be viewed as the inorganic alternatives to hybrid halide perovskites, and chalcogenide counterparts of perovskite oxides with desirable optoelectronic properties in the visible and infrared part of the electromagnetic spectrum. Past theoretical studies have predicted large absorption coefficient, desirable defect characteristics, and bulk photovoltaic effect in TMPCs. Despite recent progresses in polycrystalline synthesis and measurements of their optical properties, it is necessary to grow these materials in high crystalline quality to develop a fundamental understanding of their optical properties and evaluate their suitability for photovoltaic application. Here, we report the growth of single crystals of a two-dimensional (2D) perovskite chalcogenide, Ba3Zr2S7, with a natural superlattice-like structure of alternating double-layer perovskite blocks and single-layer rock salt structure. The material demonstrated a bright photoluminescence peak at 1.28 eV with a large external luminescence efficiency of up to 0.15%. We performed time-resolved photoluminescence spectroscopy on these crystals and obtained an effective recombination time of ~65 ns. These results clearly show that 2D Ruddlesden-Popper phases of perovskite chalcogenides are promising materials to achieve single-junction solar cells.Comment: 4 Figure

    Optimizing Retention in a Pragmatic Trial of Community‐Living Older Persons: The STRIDE Study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155912/1/jgs16356.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155912/2/jgs16356_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155912/3/jgs16356-sup-0001-supinfo.pd

    Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPION) are increasingly used to label human bone marrow stromal cells (BMSCs, also called “mesenchymal stem cells”) to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB) staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the “stemness” of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the “gold standard” of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore