18,310 research outputs found

    Limitations of PLL simulation: hidden oscillations in MatLab and SPICE

    Full text link
    Nonlinear analysis of the phase-locked loop (PLL) based circuits is a challenging task, thus in modern engineering literature simplified mathematical models and simulation are widely used for their study. In this work the limitations of numerical approach is discussed and it is shown that, e.g. hidden oscillations may not be found by simulation. Corresponding examples in SPICE and MatLab, which may lead to wrong conclusions concerning the operability of PLL-based circuits, are presented

    Reactive oxygen species, health and longevity

    Get PDF
    Reactive oxygen species (ROS) are considered responsible of ageing in animal and humans. Mitochondria are both source and target of ROS. Various strategies to reduce ROS production have been considered to extend lifespan. Caloric restriction, exercise, and antioxidants are thought to be able to protect cells from structural and functional damage. However, there is evidence that ROS production has a detrimental effect on health, but at physiological levels are necessary to stimulate longevity. They play an important effect on secondary signal transduction stimulating innate immunology and mitochondriogenesis. During exercise at moderate intensity, skeletal muscles generate ROS that are necessary for the remodelling of the muscular cells. Physical inactivity determines excessive ROS production and muscle atrophy. Caloric restriction (CR) can reduce ROS generation and improve longevity while antioxidant supplementation has shown a negative effect on longevity reducing the muscle adaptation to exercise and increasing mortality risk in patients with chronic diseases. The role of ROS in chronic diseases in also influenced by sex steroids that decrease in aging. The physiology of longevity is the result of integrated biological mechanisms that influence mitochondrial function and activity. The main objective of this review is to evaluate the effects of ROS on mitochondriogenesis and lifespan extension

    Identifying short motifs by means of extreme value analysis

    Full text link
    The problem of detecting a binding site -- a substring of DNA where transcription factors attach -- on a long DNA sequence requires the recognition of a small pattern in a large background. For short binding sites, the matching probability can display large fluctuations from one putative binding site to another. Here we use a self-consistent statistical procedure that accounts correctly for the large deviations of the matching probability to predict the location of short binding sites. We apply it in two distinct situations: (a) the detection of the binding sites for three specific transcription factors on a set of 134 estrogen-regulated genes; (b) the identification, in a set of 138 possible transcription factors, of the ones binding a specific set of nine genes. In both instances, experimental findings are reproduced (when available) and the number of false positives is significantly reduced with respect to the other methods commonly employed.Comment: 6 pages, 5 figure

    The broad-band X-ray spectrum of the Seyfert 1 galaxy, MCG+8-11-11

    Full text link
    We present a long (100 ks) Suzaku observation of one of the X-ray brightest AGN, MCG+8-11-11. These data were complemented with the 54-month Swift BAT spectrum, allowing us to perform a broad-band fit in the 0.6-150 keV range. The fits performed in the 0.6-10 keV band give consistent results with respect to a previous XMM-Newton observation, i.e. the lack of a soft excess, warm absorption along the line of sight, a large Compton reflection component (R~1) and the absence of a relativistic component of the neutral iron Kα\alpha emission line. However, when the PIN and Swift BAT data are included, the reflection amount drops significantly (R~0.2-0.3), and a relativistic iron line is required, the latter confirmed by a phenomenological analysis in a restricted energy band (3-10 keV). When a self-consistent model is applied to the whole broadband data, the observed reflection component appears to be all associated to the relativistic component of the iron Kα\alpha line. The resulting scenario, though strongly model-dependent, requires that all the reprocessing spectral components from Compton-thick material must be associated to the accretion disc, and no evidence for the classical pc-scale torus is found. The narrow core of the neutral iron Kα\alpha line is therefore produced in a Compton-thin material, like the BLR, similarly to what found in another Seyfert galaxy, NGC7213, but with the notable difference that MCG+8-11-11 presents spectral signatures from an accretion disc. The very low accretion rate of NGC7213 could explain the lack of relativistic signatures in its spectrum, but the absence of the torus in both sources is more difficult to explain, since their luminosities are comparable, and their accretion rates are completely different.Comment: 8 pages, 6 figure, accepted for publication in Astronomy and Astrophysic

    Competing with stationary prediction strategies

    Get PDF
    In this paper we introduce the class of stationary prediction strategies and construct a prediction algorithm that asymptotically performs as well as the best continuous stationary strategy. We make mild compactness assumptions but no stochastic assumptions about the environment. In particular, no assumption of stationarity is made about the environment, and the stationarity of the considered strategies only means that they do not depend explicitly on time; we argue that it is natural to consider only stationary strategies even for highly non-stationary environments.Comment: 20 page

    The Recent Star Formation in NGC 6822: an Ultraviolet Study

    Get PDF
    We characterize the star formation in the low-metallicity galaxy NGC 6822 over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A) and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and surface brightness <=26.8 mag(AB)arcsec^-2, within 0.2deg (1.7kpc) of the center of the galaxy. We estimate the extinction by interstellar dust in each SF region from resolved photometry of the hot stars it contains: E(B-V) ranges from the minimum foreground value of 0.22mag up to 0.66+-0.21mag. The integrated FUV and NUV photometry, compared with stellar population models, yields ages of the SF complexes up to a few hundred Myr, and masses from 2x10^2 Msun to 1.5x10^6 Msun. The derived ages and masses strongly depend on the assumed type of interstellar selective extinction, which we find to vary across the galaxy. The total mass of the FUV-defined SF regions translates into an average star formation rate (SFR) of 1.4x10^-2 Msun/yr over the past 100 Myr, and SFR=1.0x10^-2 Msun/yr in the most recent 10 Myr. The latter is in agreement with the value that we derive from the Ha luminosity, SFR=0.008 Msun/yr. The SFR in the most recent epoch becomes higher if we add the SFR=0.02 Msun/yr inferred from far-IR measurements, which trace star formation still embedded in dust (age <= a few Myr).Comment: Accepted for publication in ApJ, 21 pages, 6 figures, 3 table

    Hydrogen Application as a Fuel in Internal Combustion Engines

    Get PDF
    Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability, duration and specific power, and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical, chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon, carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate, which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air-fuel ratio, hydrogen-fueled engines exhibit abnormal combustions (backfire, pre-ignition, detonation), the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen-air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion, 3D CFD simulations can be of great help. It is necessary to model the injection process correctly, and then the formation of the mixture, and therefore, the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore, correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen-air mixtures and the autoignition time. In the literature, experimental data are scarce on air-hydrogen mixtures, particularly for engine-type conditions, because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio, increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work, the authors briefly describe the research path and the main challenges listed above

    Cytotoxic Effects of Hexavalent and Trivalent Chromium on Mammalian Cells In Vitro

    Get PDF
    The cytotoxic effects of hexavalent (k2Cr2O7) and trivalent (CrCl3) chromium compounds have been studied in cultured hamster fibroblasts (BHK line) and human epithelial-like cells (HEp line)

    Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis

    Get PDF
    BACKGROUND: Human mature oocytes are very susceptible to cryodamage. Several reports demonstrated that vitrification might preserve oocyte better than slow freezing. However, this is still controversial. Thus, larger clinical, biological and experimental trials to confirm this concept are necessary. The aim of the study was to evaluate and compare fine morphological features in human mature oocytes cryopreserved with either slow freezing or vitrification. METHODS: We used 47 supernumerary human mature (metaphase II) oocytes donated by consenting patients, aged 27-32 years, enrolled in an IVF program. Thirtyfive oocytes were cryopreserved using slow freezing with 1.5 M propanediol +0.2 M sucrose concentration (20 oocytes) or a closed vitrification system (CryoTip Irvine Scientific CA) (15 oocytes). Twelve fresh oocytes were used as controls. All samples were prepared for light and transmission electron microscopy evaluation. RESULTS: Control, slow frozen/thawed and vitrified/warmed oocytes (CO, SFO and VO, respectively) were rounded, 90-100 mum in diameter, with normal ooplasm showing uniform distribution of organelles. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and small mitochondria-vesicle (MV) complexes were the most numerous structures found in all CO, SFO and VO cultured for 3-4 hours. M-SER aggregates decreased, and large MV complexes increased in those SFO and VO maintained in culture for a prolonged period of time (8-9 hours). A slight to moderate vacuolization was present in the cytoplasm of SFO. Only a slight vacuolization was present in VO, whereas vacuoles were almost completely absent in CO. Amount and density of cortical granules (CG) appeared abnormally reduced in SFO and VO, irrespective of the protocol applied. CONCLUSIONS: Even though, both slow freezing and vitrification ensured a good overall preservation of the oocyte, we found that: 1) prolonged culture activates an intracellular membrane "recycling" that causes the abnormal transformation of the membranes of the small MV complexes and of SER into larger rounded vesicles; 2) vacuolization appears as a recurrent form of cell damage during slow freezing and, at a lesser extent, during vitrification using a closed device; 3) premature CG exocytosis was present in both SFO and VO and may cause zona pellucida hardenin
    • …
    corecore