48 research outputs found

    Sequential induction chemotherapy followed by radical chemo-radiation in the treatment of locoregionally advanced head-and-neck cancer

    Get PDF
    We describe a retrospective series of patients with advanced head-and-neck cancer who were treated with induction chemotherapy followed by radical chemo-radiation. Patients treated with two cycles of induction chemotherapy followed by definitive chemo-radiation for squamous cell carcinoma of the head-and-neck region, from 2001 – 2006 at the Royal Marsden Hospital, formed the basis of this study. Cisplatin (75 mg m−2) on day 1 and 5-FU (1000 mg m−2) day 1 – 4 was the standard regimen used for induction treatment. Cisplatin (100 mg m−2) on day 1 and day 29 was used for concomitant treatment. The radiation was delivered using conformal technique. Tissues containing macroscopic and microscopic disease were treated to doses of 65 Gray (Gy) in 30 fractions and 50 Gy in 25 fractions, respectively. Data on patterns of relapse and acute toxicity (NCICTCv.3.0) were collected. A total of 129 patients were included, median age was 58 (range: 27 – 78). The site of tumour was: oropharynx 70 (54%), larynx 30 (23%), hypopharynx 24 (19%) and other 5 (4%). The median follow-up was 19 months (range: 4 – 58). Local control, disease-specific survival and overall survival at 2 years were 71%, 68% and 63%, respectively. The distant recurrence rate at 2 years was 9%. Ten patients required dose reduction during induction chemotherapy due to toxicity. The dose of 5-FU was reduced in six patients and that of cisplatin in four patients. The incidence of grade 3/4 toxicity was: neutropenia 5%, thrombocytopenia 1%, nausea and vomiting 3%. One cycle of concurrent cisplatin was omitted in 23 patients due to toxicity. Full-dose radiotherapy was administered to 98% of patients. The incidence of grade 3/4 toxicity was: skin 20%, dysphagia 65%, mucositis 60%, neutropenia 3%, anaemia 1%, nausea and vomiting 4%, nephrotoxicity 1%. Induction chemotherapy followed by radical chemo-radiation is a safe and tolerable regimen in the treatment of advanced head-and-neck cancer. Distant recurrence rates are lower with equivalent local control and survival compared to chemo-radiation alone (historical controls)

    Enhanced Syllable Discrimination Thresholds in Musicians

    Get PDF
    Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.Grammy FoundationWilliam F. Milton Fun

    Beat synchronization across the lifespan: intersection of development and musical experience

    Get PDF
    Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample

    The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

    Get PDF
    A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    The interstitium in cardiac repair: role of the immune-stromal cell interplay

    Get PDF
    Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases

    Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Full text link

    “Shall We Play a Game?”: Improving Reading Through Action Video Games in Developmental Dyslexia

    Full text link

    Counseling in isolated mild fetal ventriculomegaly

    No full text
    In this Review we aim to provide up-to-date and evidence-based answers to the common questions regarding the diagnosis of isolated mild fetal ventriculomegaly (VM). A literature search was performed to identify all reports of antenatal VM in the English language literature. In addition, reference lists of articles identified using the search were scrutinized to further identify relevant articles. Fetal mild VM is commonly defined as a ventricular atrial width of 10.0-15.0 mm, and it is considered isolated if there are no associated ultrasound abnormalities. There is no good evidence to suggest that the width of the ventricular atria contributes to the risk of neurodevelopmental outcome in fetuses with mild VM. The most important prognostic factors are the association with other abnormalities that escape early detection and the progression of ventricular dilatation, which are reported to occur in about 13% and 16% of cases, respectively. Most infants with a prenatal diagnosis of isolated mild VM have normal neurological development at least in infancy. The rate of abnormal or delayed neurodevelopment in infancy is about 11%, and it is unclear whether this is higher than in the general population. Furthermore, the number of infants that develop a real handicap is unknown. There are limitations of existing studies of mild VM. Although they address many of the relevant questions regarding the prognosis and management of fetal isolated mild VM, there is a lack of good-quality postnatal follow-up studies. The resulting uncertainties make antenatal counseling for this abnormality difficult
    corecore