116 research outputs found

    The CloudUPDRS smartphone software in Parkinson’s study: cross-validation against blinded human raters

    Get PDF
    Digital assessments of motor severity could improve the sensitivity of clinical trials and personalise treatment in Parkinson’s disease (PD) but have yet to be widely adopted. Their ability to capture individual change across the heterogeneous motor presentations typical of PD remains inadequately tested against current clinical reference standards. We conducted a prospective, dual-site, crossover-randomised study to determine the ability of a 16-item smartphone-based assessment (the index test) to predict subitems from the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) as assessed by three blinded clinical raters (the reference-standard). We analysed data from 60 subjects (990 smartphone tests, 2628 blinded video MDS-UPDRS III subitem ratings). Subject-level predictive performance was quantified as the leave-one-subject-out cross-validation (LOSO-CV) accuracy. A pre-specified analysis classified 70.3% (SEM 5.9%) of subjects into a similar category to any of three blinded clinical raters and was better than random (36.7%; SEM 4.3%) classification. Post hoc optimisation of classifier and feature selection improved performance further (78.7%, SEM 5.1%), although individual subtests were variable (range 53.2–97.0%). Smartphone-based measures of motor severity have predictive value at the subject level. Future studies should similarly mitigate against subjective and feature selection biases and assess performance across a range of motor features as part of a broader strategy to avoid overly optimistic performance estimates

    Network localization of cervical dystonia based on causal brain lesions

    Get PDF
    Cervical dystonia is a neurological disorder characterized by sustained, involuntary movements of the head and neck. Most cases of cervical dystonia are idiopathic, with no obvious cause, yet some cases are acquired, secondary to focal brain lesions. These latter cases are valuable as they establish a causal link between neuroanatomy and resultant symptoms, lending insight into the brain regions causing cervical dystonia and possible treatment targets. However, lesions causing cervical dystonia can occur in multiple different brain locations, leaving localization unclear. Here, we use a technique termed lesion network mapping', which uses connectome data from a large cohort of healthy subjects (resting state functional MRI, n = 1000) to test whether lesion locations causing cervical dystonia map to a common brain network. We then test whether this network, derived from brain lesions, is abnormal in patients with idiopathic cervical dystonia (n = 39) versus matched controls (n = 37). A systematic literature search identified 25 cases of lesion-induced cervical dystonia. Lesion locations were heterogeneous, with lesions scattered throughout the cerebellum, brainstem, and basal ganglia. However, these heterogeneous lesion locations were all part of a single functionally connected brain network. Positive connectivity to the cerebellum and negative connectivity to the somatosensory cortex were specific markers for cervical dystonia compared to lesions causing other neurological symptoms. Connectivity with these two regions defined a single brain network that encompassed the heterogeneous lesion locations causing cervical dystonia. These cerebellar and somatosensory regions also showed abnormal connectivity in patients with idiopathic cervical dystonia. Finally, the most effective deep brain stimulation sites for treating dystonia were connected to these same cerebellar and somatosensory regions identified using lesion network mapping. These results lend insight into the causal neuroanatomical substrate of cervical dystonia, demonstrate convergence across idiopathic and acquired dystonia, and identify a network target for dystonia treatment

    A screening tool to quickly identify movement disorders in patients with inborn errors of metabolism

    Get PDF
    BackgroundMovement disorders are frequent in patients with inborn errors of metabolism (IEMs) but poorly recognized, particularly by nonmovement disorder specialists. We propose an easy-to-use clinical screening tool to help recognize movement disorders.ObjectiveThe aim is to develop a user-friendly rapid screening tool for nonmovement disorder specialists to detect moderate and severe movement disorders in patients aged ≥4 years with IEMs.MethodsVideos of 55 patients with different IEMs were scored by experienced movement disorder specialists (n = 12). Inter-rater agreements were determined on the presence and subtype of the movement disorder. Based on ranking and consensus, items were chosen to be incorporated into the screening tool.ResultsA movement disorder was rated as present in 80% of the patients, with a moderate inter-rater agreement (κ =0.420, P P ConclusionsWe designed a screening tool to recognize movement disorders in patients with IEMs. We propose that this screening tool can contribute to select patients who should be referred to a movement disorder specialist for further evaluation and, if necessary, treatment of the movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Neurological Motor Disorder

    Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis

    Get PDF
    Objectives:To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson's Disease.Methods:A retrospective study of genetic Parkinson's diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.Results:Scans were available from 37 cases of monogenetic Parkinson's disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson's disease with GBA or LRRK2 mutations was greater than that for Parkinson's disease with alpha synuclein, PINK1 or Parkin mutations.Conclusions:The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss

    Experimental progress in positronium laser physics

    Get PDF

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Atypical parkinsonism - New advances

    No full text
    Purpose of review This update discusses novel aspects on genetics, pathophysiology and therapeutic approaches for atypical parkinsonism (progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy) published in the last 2 years. Recent findings In terms of genetics, in progressive supranuclear palsy and corticobasal degeneration new risk loci have been identified but also their possible association to disease pathogenesis. In multiple system atrophy, there is still a debate as to whether COQ2 variants are associated with disease, at least in non-Asian population, whereas at the same time evidence of coenzyme Q10 deficiency in serum and brains of MSA patients has been reported. In terms of pathogenesis, the 'prion' hypothesis has prevailed in the last years in the literature, and the first clinical studies based on such disease mechanisms are already in phase I. Despite all these discoveries, clinical diagnosis still remains poor, and phenotypic variability is reported much higher than previously thought. A plethora of studies testing possible neuroprotective agents are currently ongoing. Summary The knowledge on all aspects of atypical parkinsonism has increased tremendously in the last 2 years, leading the field closer to the understanding of the pathophysiology of these diseases, and to the discovery of a neuroprotective treatment. © Copyright 2016 Wolters Kluwer Health, Inc. All rights reserved

    How to approach a patient with parkinsonism – red flags for atypical parkinsonism

    No full text
    Parkinsonism is a clinical syndrome defined by bradykinesia plus rigidity or tremor. Though most commonly encountered in the setting of idiopathic Parkinson's disease, a number of neurodegenerative, structural, metabolic and toxic neurological disorders can result in parkinsonism. Accurately diagnosing the underlying cause of parkinsonism is of both therapeutic and prognostic relevance, especially as we enter the era of disease-modifying treatment trials for neurodegenerative disorders. Being aware of the wide array of potential causes of parkinsonism is of paramount importance for clinicians. In this chapter, we present a pragmatic clinical approach to patients with parkinsonism, specifically focusing on ‘red flags’, which should alert one to consider diagnoses other than idiopathic Parkinson's disease. © 2019 Elsevier Inc

    "Atypical" atypical parkinsonism: New genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy-A diagnostic guide

    No full text
    Recently, a number of genetic parkinsonian conditions have been recognized that share some features with the clinical syndromes of progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and multiple system atrophy (MSA), the classic phenotypic templates of atypical parkinsonism. For example, patients with progranulin, dynactin, or ATP13A gene mutations may have vertical supranuclear gaze palsy. This has made differential diagnosis difficult for practitioners. In this review, our goal is to make clinicians aware of these genetic disorders and provide clinical clues and syndromic associations, as well as investigative features, that may help in diagnosing these disorders. The correct identification of these patients has important clinical, therapeutic, and research implications. © 2013 Movement Disorder Society
    corecore