67 research outputs found

    Towards a Model Based Sensor Measurement Variance Input for Extended Kalman Filter State Estimation

    Get PDF
    In this paper, we present an alternate method for the generation and implementation of the sensor measurement variance used in an Extended Kalman Filter (EKF). Furthermore, it demonstrates the limitations of a conventional EKF implementation and postulates an alternate form for representing the sensor measurement variance by extending and improving the characterisation methodology presented in the previous work. As presented in earlier work, the use of surveying grade optical measurement instruments allows for a more effective characterisation of Ultra-Wide Band (UWB) localisation sensors; however, in cluttered environments, the sensor measurement variance will change, making this method not robust. To compensate for the noisier readings, an EKF using a model based sensor measurement variance was developed. This approach allows for a more accurate representation of the sensor measurement variance and leads to a more robust state estimation system. Simulations were run using synthetic data in order to test the effectiveness of the EKF against the originally developed EKF; next, the new EKF was compared to the original EKF using real world data. The new EKF was shown to function much more stably and consistently in less ideal environments for UWB deployment than the previous version

    Temporal Monitoring of Simulated Burials in an Arid Environment Using RGB/Multispectral Sensor Unmanned Aerial Vehicles

    Get PDF
    For the first time, RGB and multispectral sensors deployed on UAVs were used to facilitate grave detection in a desert location. The research sought to monitor surface anomalies caused by burials using manual and enhanced detection methods, which was possible up to 18 months. Near-IR (NIR) and Red-Edge bands were the most suitable for manual detection, with a 69% and 31% success rate, respectively. Meanwhile, the enhanced method results varied depending on the sensor. The standard Reed–Xiaoli Detector (RXD) algorithm and Uniform Target Detector (UTD) algorithm were the most suitable for RGB data, with 56% and 43% detection rates, respectively. For the multispectral data, the percentages varied between the algorithms with a hybrid of the RXD and UTD algorithms yielding a 56% detection rate, the UTD algorithm 31%, and the RXD algorithm 13%. Moreover, the research explored identifying grave mounds using the normalized digital surface model (nDSM) and evaluated using the normalized difference vegetation index (NDVI) in grave detection. nDSM successfully located grave mounds at heights as low as 1 cm. A noticeable difference in NDVI values was observed between the graves and their surroundings, regardless of the extreme weather conditions. The results support the potential of using RGB and multispectral sensors mounted on UAVs for detecting burial sites in an arid environment

    The detection of clandestine graves in an arid environment using thermal imaging deployed from an unmanned aerial vehicle

    Get PDF
    The Middle East is one of the world regions that has frequently suffered from armed conflicts that resulted in mass burials. However, the detection of clandestine graves in such an arid environment by deploying remote sensing payload on unmanned aerial vehicles (UAVs) has received little attention. The present study used a UAV equipped with a thermal sensor aimed at narrowing down the search area of possible gravesites in the arid climate of Kuwait. The enclosed research area, which includes both control and experimental mass graves, was imaged for 18 months. The variation in topsoil temperature and soil moisture between the graves and their surroundings was evaluated. The results of the analysis demonstrated the effectiveness of thermal imaging techniques in detecting heat produced from buried sheep carcasses and detecting the change in grave soil moisture for our research environment for 7 and 10 months, respectively. The buried animals significantly influenced the topsoil temperature (p = 0.044), while the height from which the images were captured had an insignificant effect on the measured temperature within the range tested (p = 0.985). Furthermore, there was a negative correlation (−0.359) between grave temperature and the calculated soil moisture. The results from these cost- and time-effective search methods presented in this study confirm their potential for the detection of burial sites in an arid environment

    Un cadre méthodologique pour évaluer l'équivalence entre pertes et gains de biodiversité induits par les projets d'aménagement et leurs mesures compensatoires

    Get PDF
    In France, the Mitigation hierarchy aims to achieve the "no net loss" (NNL) of biodiversity at the development projects scale. One of the key issues to achieve this goal is to demonstrate the ecological equivalence between the gains associated with offsets and the losses caused by the impacts. Despite regulatory improvements, the French law does not include a method to follow for determining equivalence, and none is unanimously recognized. This leads to heterogeneous practices and difficulty in reaching the NNL. In this context, we have developed a methodological framework for assessing equivalence adapted to the French regulatory and ecological context and combining three challenges: operationality, scientific basis and comprehensiveness. This methodological framework makes it possible 1 / to evaluate the biodiversity found on impacted and compensating sites by taking into account ordinary biodiversity and the one of interest, with a focus on functionalities; 2 / to estimate the value of the indicators after impact and MC, in the short and long term, taking into account associated uncertainties; and 3 / calculating losses and gains leading to a quantitative and transparent equivalence assessment. The use of the methodological framework favors dialogue between actors and also allows monitoring of offsets over time.En France, la séquence « Eviter Réduire Compenser » (ERC) a pour objectif d'atteindre « l'absence de perte nette (APN) » de biodiversité à l'échelle des projets d'aménagement. Un des enjeux clé pour y arriver consiste à démontrer l'équivalence écologique entre les gains associés aux mesures compensatoire (MC) et les pertes occasionnées par les impacts. Malgré les avancées règlementaires, le cadre français n'inclut pas de méthode à suivre pour déterminer l'équivalence et aucune n'est unanimement reconnue. Cela amène à des pratiques hétérogènes et une difficulté d'atteindre l'APN. Dans ce contexte, nous avons développé un cadre méthodologique d'évaluation de l'équivalence adapté au contexte règlementaire et écologique français, répondant à trois défis : opérationnalité, bases scientifiques et exhaustivité. Ce cadre méthodologique permet 1/ d'évaluer la biodiversité des sites impactés et compensatoires en tenant compte de la biodiversité ordinaire et à enjeu en insistant sur les fonctionnalités, 2/ d'estimer la valeur des indicateurs après impact et MC à court et long terme, en prenant en compte les incertitudes associées et 3/ de calculer les pertes et des gains, aboutissant ainsi à une évaluation quantitative et transparente de l'équivalence. L'utilisation du cadre méthodologique favorise la concertation entre acteurs et permet également un suivi des MC dans le temps

    Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P₄

    Get PDF
    A reaction scheme has been devised according to 3 RX + 3 Ti(III) + 0.25 P₄ → PR₃ + 3 XTi(IV), wherein RX = PhBr, CyBr, Me₃SiI or Ph₃SnCl, with contrasting results in the case of more hindered RX. The scheme accomplishes the direct radical functionalization of white phosphorus without the intermediacy of PCl₃

    DigiArt: towards a virtualization of Cultural Heritage

    Get PDF
    DigiArt is a Europe-wide project aimed at providing a new, cost efficient solution to the capture, processing and display of cultural artefacts. The project will change the ways in which the public interact with cultural objects and spaces in a dramatic way. This project is unique in its collaborative approach: cultural heritage professionals working directly with electrical, mechanical, optical and software engineers to develop a solution to current issues faced by the museum sector. The innovations created by the engineers are driven by the demand of the cultural heritage sector. The diversity of the objects and spaces of the three test museums are challenging the engineers to provide a tool useful for a broad variety of indoor and outdoor museums in the future. This goes from using Unmanned Aerial Vehicle (UAVs or drones) to fly and record large sites, to using scanners to record fine jewellery. As a case study, we present here the use-case of Scladina Cave. At the end of the project, the Scladina Cave Archaeological Centre will offer two different visitor experiences. The first uses virtual reality, which will be available anytime, anywhere, to anyone with an internet connected device. The second will use augmented reality technologies within the cave site. The augmented reality visit of the cave will enhance the tour of Scladina by offering visits that would not be possible where it not for the augmented reality, where 3D objects and animations will contribute to offer a new 3D-immersive experience

    Daratumumab displays in vitro and in vivo anti-tumor activity in models of B-cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens

    Get PDF
    Altres ajuts: This work was carried out at the Esther Koplowitz Center, Barcelona. Genmab and Janssen pharmaceuticals funded this research. Additional grants that contributed to this work included: [...], and CIBERONC (CB16/12/00334 and CB16/12/00225).CD38 is expressed in several types of non-Hodgkin lymphoma (NHL) and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory (R/R) multiple myeloma (MM). It has also demonstrated clinical activity in Waldenström macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma (MCL), follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a three-dimensional (3D) lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of MCL and FL, and shows comparable activity to rituximab in a disseminated in vivo model of blastic MCL. Moreover, daratumumab improves overall survival (OS) in a mouse model of transformed CD20 FL, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in MCL and FL xenografts. Furthermore, in a patient-derived DLBCL xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development

    Overexpression of Protein Kinase C Confers Protection Against Antileukemic Drugs by Inhibiting the Redox-Dependent Sphingomyelinase Activation

    Get PDF
    ABSTRACT Induction of apoptosis by chemotherapeutic drugs involves the sphingomyelin-ceramide (SM-CER) pathway. This signaling is critically dependent on reactive oxygen species (ROS) generation and p53/p56 Lyn activation. In this study, we have investigated the influence of protein kinase C (PKC) overexpression on the SM-CER pathway in U937 human leukemia cell line. We show that PKC overexpression resulted in delayed apoptosis and significant resistance to both 1-␤-D-arabinofuranosylcytosine (ara-C) and daunorubicin (DNR), but there was no significant protection against cell-permeant C 6 -CER. Moreover, PKC overexpression abrogated drug-induced neutral sphingomyelinase stimulation and CER generation by inhibiting ROS production. We further investigated p53/p56 Lyn activation in PKC-overexpressing U937 cells treated with ara-C or DNR. We demonstrate that PKC inhibited p53/p56 Lyn phosphorylation and stimulation in drug-or H 2 O 2 -treated cells, suggesting that p53/p56 Lyn redox regulation is altered in PKC-overexpressing cells. Finally, we show that PKC-overexpressing U937 cells displayed accelerated H 2 O 2 detoxification. Altogether, our study provides evidence for the role of PKC in the negative regulation of drug-induced SM-CER pathway

    Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    Get PDF
    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells

    The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence

    Get PDF
    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.publishedVersio
    corecore