149 research outputs found

    Inter-individual stereotypy of the Platynereis larval visual connectome

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (Randel et al., 2014). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/European Research Council Grant Agreement 260821.European Research Council (ERC): Grant Agreement 260821, Gaspar Jekel

    A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes.

    Get PDF
    This is the final version of the article.Available from eLife Sciences Publications via the DOI in this record.Electron microscopy-based connectomics aims to comprehensively map synaptic connections in neural tissue. However, current approaches are limited in their capacity to directly assign molecular identities to neurons. Here, we use serial multiplex immunogold labeling (siGOLD) and serial-section transmission electron microscopy (ssTEM) to identify multiple peptidergic neurons in a connectome. The high immunogenicity of neuropeptides and their broad distribution along axons, allowed us to identify distinct neurons by immunolabeling small subsets of sections within larger series. We demonstrate the scalability of siGOLD by using 11 neuropeptide antibodies on a full-body larval ssTEM dataset of the annelid Platynereis. We also reconstruct a peptidergic circuitry comprising the sensory nuchal organs, found by siGOLD to express pigment-dispersing factor, a circadian neuropeptide. Our approach enables the direct overlaying of chemical neuromodulatory maps onto synaptic connectomic maps in the study of nervous systems.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821. This project is supported by the Marie Curie ITN "Neptune", GA 317172, funded under the FP7, PEOPLE Work Programme of the European Commission

    Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling

    Get PDF
    The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.AJOM was financed by a PhD Grant of the FPI program from the Spanish Ministerio de Ciencia e Innovación; TCB's PhD Grant belonged to the FPU Program of the same Ministry. AJOM and AGC were supported by Projects CGL2010-20748-C02-01 and CGL2013-48247-P of the mentioned Ministry, and RNM6433 of the Consejería de Economía, Innovación y Ciencia of the Junta de Andalucía. The European COST Action TD0903 contributed via two Short Term Scientific Missions to AJOM in FM's lab in Dijon

    Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter

    Full text link
    A model of induced gravity with a Higgs potential is investigated in detail in view of the pressure components related to the scalar-field excitations. The physical consequences emerging as an artifact due to the presence of these pressure terms are analysed in terms of the constraints parting from energy density, solar-relativistic effects and galactic dynamics along with the dark matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE

    Efecto de niveles de furazolidona en producción de carne y huevo

    Get PDF
    El uso de drogas en la nutrición de las aves, tanto en profilaxis como en el control de algunas enfermedades, se ha generalizado y ha sido uno de los factores que han contribuido al desarrollo y progreso de la industria avícola (Morrison, Tremer y Standish, 1974)

    Review of concepts in therapeutic decision-making in HER2-negative luminal metastatic breast cancer

    Get PDF
    Purpose: Hormone receptor (HR)-positive, Human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC) requires a therapeutic approach that takes into account multiple factors, with treatment being based on anti-estrogen hormone therapy (HT). As consensus documents are valuable tools that assist in the decision-making process for establishing clinical strategies and optimize the delivery of health services, this consensus document has been created with the aim of developing recommendations on cretiera for hormone sensitivity and resistance in HER2-negative luminal MBC and facilitating clinical decision-making. Methods: This consensus document was generated using a modification of the RAND/UCLA methodology, which included the definition of the project and identification of issues of interest, a non-exhaustive systematic review of the literature, an analysis and synthesis of the scientific evidence, preparation of recommendations, and external evaluation with a panel of 64 medical oncologists specializing in breast cancer. Results: A Spanish panel of experts reached consensus on 32 of the 32 recommendations/conclusions presented in the first round and were accepted with an approval rate of 100% about definition of metastatic disease not susceptible to local curative treatment, definition of hormone sensitivity and hormone resistance in metastatic luminal disease and therapeutic decision-making. Conclusion: We have developed a consensus document with recommendations on the treatment of patients with HER2-negative luminal MBC that will help to improve therapeutic benefits

    Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton.

    Get PDF
    This is the final version.Available from eLife Publications via the DOI in this record.All data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 1, 3 and 4 and Figure 2-figure supplement 2.Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.The research was supported by a grant from the DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/3–1). SY was supported by the National Institutes of Health (R01EY016400) and Emory University. KTR is supported by grants from the University of Vienna (research platform “Rhythms of Life”), the FWF (http://www.fwf.ac.at/en/) research project grant (#P28970), and the European Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement 337011

    Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.

    Get PDF
    Author's accepted versionFinal version available from ACS via the DOI in this recordAs a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.FJGA and PA-G acknowledge support from the Spanish Ministry of Economy and Competitiveness through the national programs MAT2014-59096-P and FIS2014-60195-JIN, respectively. MFC and SR acknowledge support from EPSRC (Grant no. EP/J000396/1, 281 EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM- 002438/1), from Royal Society International Exchanges Scheme 2012/R3 and 2013/R2 and from European Commission (FP7-ICT-2013-613024-GRASP). SD, DNB and MF acknowledge support of ONR N00014-15-1-2671. DNB is the Moore Investigator in Quantum Materials funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4533

    Nurse-like cells control the activity of chronic lymphocytic leukemia b cells via galectin-1

    Get PDF
    Accumulation of neoplastic cells in chronic lymphocytic leukemia (CLL) is conditioned by a variety of signals delivered by accompanying cells in lymphoid tissues. Here we examined the relevance of galectin-1 (Gal-1), a glycan-binding protein with immunoregulatory activity, within the CLL microenvironment. We found that monocytes in peripheral blood and stromal and myeloid cells in bone marrow biopsies are the main source of Gal1. Knocking down Gal1 in adherent nurse-like cells differentiated in vitro decreased the expression of activation markers (CD80, CD86, CD25) and mRNA levels of IL10 and CCL3 in CLL cells. The concentration of Gal1 in plasma was increased in CLL patients compared to healthy subjects. Likewise, we found a higher expression of Gal1 in bone marrow biopsies from patients with progressive disease. These results provide the first evidence of a role for Gal-1 in CLL cell differentiation and its expression in accompanying myeloid cells.Fil: Croci Russo, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Morande, Pablo Elías. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Borge, Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Toscano, Marta Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Stupirski, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Bezares, R. F.. Hospital General de Agudos "Dr T. Alvarez"; ArgentinaFil: Avalos, J. S.. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Narbaitz, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Gamberale, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Giordano, Mirta Nilda. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; Argentin

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR
    corecore