194 research outputs found

    New insights on structure and stratigraphic interpretation for assessing the hydrocarbon potentiality of the offshore Nile Delta basin, Egypt

    Get PDF
    The study area lies around the petroleum provinces of the Egyptian Offshore Nile Delta basin. The existing exploration data are sparse, and any effort made on the strati-structural interpretation is challenging for exploratory drilling campaigns, even with meager well control. Keeping in view the issues and major challenges, the authors propose new methodologies, tools and new insights into the interpretation of the existing data and information, to make the study area more attractive for investors and detailed exploration studies. The published geological work existing within the vicinity of the study area is an added value to the new insights of current interpretation and knowledge acquisition. Pliocene–Pleistocene section is the main target in the study area, since it has quality reservoirs, holding commercial hydrocarbons. Pre-salt source rocks may have charged the reservoirs in the study area. Structural complexities and heterogeneities at target levels are likely to impact the seismic wavelet property intricacies and thus the data processing qualities. Post- and pre-salt tectonics in the northern part of Sinai, the Nile Cone, and how they affect the structural framework and the seismic interpretation work in the study area are described. For the purpose of understanding the combinational trapping mechanism, stratigraphic features and the structural geology are integrated using new tools and technologies. Several strati-structural plays are interpreted in the study area that support the detailed exploration campaigns, and the existing major hydrocarbon plays associated within shelf, slope and deep-marine geological events in nearby offshore regions. Diapir salt, rotated fault blocks and growth faults within syn-sediment systems are other plays to be investigated. The study is an effort of compiled work from many published sources, putting all ideas into a positive perspective and has better understanding of new opportunities, leads and prospects for investment purposes in the Nile Delta offshore basin

    The Induction of APC with a Distinct Tolerogenic Phenotype via Contact-Dependent STAT3 Activation

    Get PDF
    BACKGROUND: Activation of the signal transducer and activator of transcription 3 (STAT3) within antigen presenting cells (APCs) is linked to abnormal APCs differentiation and function. We have previously shown that STAT3 is activated within APC by a novel contact-dependent mechanism, which plays a key role in mediating the immunomodulatory effects of hMSC. In order to better understand the underlying mechanisms that control APC maturation in a contact dependent manner, we extended our observation to tumor cells. Tumors were shown to secrete a variety of tumor-derived factors that activate STAT3 within infiltrating APCs. We now tested whether tumor cells can activate STAT3 within APC using the contact-dependent mechanism, in addition to soluble factors, and compared these two STAT3 activating pathways. PRINCIPAL FINDINGS: We demonstrate that in addition to tumor-derived secreted factors tumor cells activate STAT3 by a mechanism that is based on cell-cell interaction. We further demonstrate that these two STAT3 activating mechanisms differ in their JAK usage and their susceptibility to JSI-124 inhibition thereby representing two distinct pathways. Significantly, although both pathways activate STAT3, they modulate DCs maturation in a different manner that results in disparate phenotypic outcomes. Whereas the soluble-dependent pathway results in an immature phenotype, the contact-dependent pathway results in an apparently mature phenotype. Albeit their mature-like phenotype these latter cells express the tolerogenic markers ILT3 and ILT4 and possess T cell inhibitory activity. SIGNIFICANCE: This data suggests that, in at least certain cellular microenvironments, cell:cell interactions represent a novel way to activate STAT3 signaling, uncouple APC activation events and consequently regulate immunity and tolerance. Significantly, we have now demonstrated that this contact-dependent signaling pathway differs from that mediated by soluble factors and cytokines, inducing disparate phenotypic outcome, suggesting these two mechanisms have different and possibly complementary biological functions

    Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly (methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6-20 ìm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 w% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36-300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic disks to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres.8pÍuPeer reviewedFinal Published versio

    Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice

    Get PDF
    Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28 days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts. With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however, the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45+ leukocytes, CD3+ lymphocytes and CD8+ T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing

    Impact of atrial fibrillation on clinical outcomes among patients with coronary artery disease undergoing revascularisation with drug-eluting stents

    Get PDF
    Coronary artery disease (CAD) and atrial fibrillation (AF) are major determinants of morbidity and mortality. A combined treatment with antiplatelet agents and vitamin K antagonists limits the risk of stent thrombosis and stroke while increasing the rate of bleeding. The objective of this study was to investigate the impact of atrial fibrillation (AF) on long-term clinical outcomes in patients with CAD undergoing percutaneous coronary intervention (PCI) with drug-eluting stents (DES)

    Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis

    Get PDF
    We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair
    corecore