281 research outputs found

    Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain

    Get PDF
    Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms-such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)-were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32) or its regulatory domain (10), serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES), a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH), quantitative PCR (qPCR), long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study, elucidating the etiology of a large set of rare microdeletions involved in a monogenic disorder, can serve as a model for other clustered, non-recurrent microdeletions in genetic disease

    Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood.

    Get PDF
    Excess collagen synthesis (fibrogenesis) in the liver plays a causal role in the progression of nonalcoholic fatty liver disease (NAFLD). Methods are needed to identify patients with more rapidly progressing disease and to demonstrate early response to treatment. We describe here a novel method to quantify hepatic fibrogenesis flux rates both directly in liver tissue and noninvasively in blood. Twenty-one patients with suspected NAFLD ingested heavy water (2 H2 O, 50-mL aliquots) two to three times daily for 3-5 weeks prior to a clinically indicated liver biopsy. Liver collagen fractional synthesis rate (FSR) and plasma lumican FSR were measured based on 2 H labeling using tandem mass spectrometry. Patients were classified by histology for fibrosis stage (F0-F4) and as having nonalcoholic fatty liver or nonalcoholic steatohepatitis (NASH). Magnetic resonance elastography measurements of liver stiffness were also performed. Hepatic collagen FSR in NAFLD increased with advancing disease stage (e.g., higher in NASH than nonalcoholic fatty liver, positive correlation with fibrosis score and liver stiffness) and correlated with hemoglobin A1C. In addition, plasma lumican FSR demonstrated a significant correlation with hepatic collagen FSR.ConclusionUsing a well-characterized cohort of patients with biopsy-proven NAFLD, this study demonstrates that hepatic scar in NASH is actively remodeled even in advanced fibrosis, a disease that is generally regarded as static and slowly progressive. Moreover, hepatic collagen FSR correlates with established risks for fibrotic disease progression in NASH, and plasma lumican FSR correlates with hepatic collagen FSR, suggesting applications as direct or surrogate markers, respectively, of hepatic fibrogenesis in humans. (Hepatology 2017;65:78-88)

    A low α-linolenic intake during early life increases adiposity in the adult guinea pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The composition of dietary fatty acids (FA) during early life may impact adult adipose tissue (AT) development. We investigated the effects of α-linolenic acid (ALA) intake during the suckling/weaning period on AT development and metabolic markers in the guinea pig (GP).</p> <p>Methods</p> <p>Newborn GP were fed a 27%-fat diet (w/w %) with high (10%-ALA group), moderate (2.4%-ALA group) or low (0.8%-ALA group) ALA content (w/w % as total FA) until they were 21 days old (d21). Then all animals were switched to a 15%-fat diet containing 2% ALA (as total FA) until 136 days of age (d136).</p> <p>Results</p> <p>ALA and docosapentaenoic acid measured in plasma triglycerides (TG) at d21 decreased with decreasing ALA intake. Total body fat mass was not different between groups at d21. Adipose tissue TG synthesis rates and proliferation rate of total adipose cells, as assessed by <sup>2</sup>H<sub>2</sub>O labelling, were unchanged between groups at d21, while hepatic de novo lipogenesis was significantly 2-fold increased in the 0.8%-ALA group. In older GP, the 0.8%-ALA group showed a significant 15-%-increased total fat mass (d79 and d107, p < 0.01) and epididymal AT weight (d136) and tended to show higher insulinemia compared to the 10%-ALA group. In addition, proliferation rate of cells in the subcutaneous AT was higher in the 0.8%-ALA (15.2 ± 1.3% new cells/5d) than in the 10%-ALA group (8.6 ± 1.7% new cells/5d, p = 0.021) at d136. AT eicosanoid profiles were not associated with the increase of AT cell proliferation.</p> <p>Conclusion</p> <p>A low ALA intake during early postnatal life promotes an increased adiposity in the adult GP.</p

    Insulin and glucose metabolism with olanzapine and a combination of olanzapine and samidorphan: Exploratory phase 1 results in healthy volunteers

    Get PDF
    A combination of olanzapine and samidorphan (OLZ/SAM) received US Food and Drug Administration approval in May 2021 for the treatment of adults with schizophrenia or bipolar I disorder. OLZ/SAM provides the efficacy of olanzapine, while mitigating olanzapine-associated weight gain. This exploratory study characterized the metabolic profile of OLZ/SAM in healthy volunteers to gain mechanistic insights. Volunteers received once-daily oral 10 mg/10 mg OLZ/SAM, 10 mg olanzapine, or placebo for 21 days. Assessments included insulin sensitivity during an oral glucose tolerance test (OGTT), hyperinsulinemic-euglycemic clamp, other measures of glucose/lipid metabolism, and adverse event (AE) monitoring. Treatment effects were estimated with analysis of covariance. In total, 60 subjects were randomized (double-blind; placebo, n = 12; olanzapine, n = 24; OLZ/SAM, n = 24). Olanzapine resulted in hyperinsulinemia and reduced insulin sensitivity during an OGTT at day 19, changes not observed with OLZ/SAM or placebo. Insulin sensitivity, measured by hyperinsulinemic-euglycemic clamp, was decreased in all treatment groups relative to baseline, but this effect was greatest with olanzapine and OLZ/SAM. Although postprandial (OGTT) glucose and fasting cholesterol concentrations were similarly increased with olanzapine or OLZ/SAM, other early metabolic effects were distinct, including post-OGTT C-peptide concentrations and aspects of energy metabolism. Forty-nine subjects (81.7%) experienced at least 1 AE, most mild or moderate in severity. OLZ/SAM appeared to mitigate some of olanzapine\u27s unfavorable postprandial metabolic effects (e.g., hyperinsulinemia, elevated C-peptide) in this exploratory study. These findings supplement the body of evidence from completed or ongoing OLZ/SAM clinical trials supporting its role in the treatment of schizophrenia and bipolar I disorder

    Endothelial function and insulin sensitivity during acute non-esterified fatty acid elevation: effects of fat composition and gender

    Get PDF
    Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324

    Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    Get PDF
    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular
    corecore