10,237 research outputs found
The Perfect Pitch: Car Commercials in the Environment
Car commercials, like many advertisements, tempt its viewers with comfort, capability, or safety features, as well as being well‐engineered, affordable, attractive, large or compact sized, or fuel efficient. This study examines the pitches in YouTube car commercial video clips from the 1960s until 2014. We coded a total of 263 total car commercials based on pitch, setting, narrator, decade, and country of origin. The analysis revealed that most car commercials were presented in rural settings and capability was pitched most frequently overall. Fuel efficiency was ranked third overall; however, within urban settings, fuel efficiency had the highest frequency. During the 1990s, there was no presence of commercials alluding to fuel efficiency and instead safety was pitched more frequently compared to other decades. We discuss the other pitches that were found to be significantly different between the settings, narrators, decades, and countries of origin. Over time, pitches in car commercials have changed, perhaps because advertising is influenced by consumer demands, interests, and concerns
The alpha-particle in nuclear matter
Among the light nuclear clusters the alpha-particle is by far the strongest
bound system and therefore expected to play a significant role in the dynamics
of nuclei and the phases of nuclear matter. To systematically study the
properties of the alpha-particle we have derived an effective four-body
equation of the Alt-Grassberger-Sandhas (AGS) type that includes the dominant
medium effects, i.e. self energy corrections and Pauli-blocking in a consistent
way. The equation is solved utilizing the energy dependent pole expansion for
the sub system amplitudes. We find that the Mott transition of an
alpha-particle at rest differs from that expected from perturbation theory and
occurs at approximately 1/10 of nuclear matter densities.Comment: 9 pages RevTex file, 1 figure, submitted to Phys. Lett.
Galileo early cruise, including Venus, first Earth, and Gaspra encounters
This article documents Deep Space Network (DSN) support for the Galileo cruise to Jupiter. The unique trajectory affords multiple encounters during this cruise phase. Each encounter had or will have unique requirements for data acquisition and DSN support configurations. An overview of the cruise and encounters through the asteroid Gaspra encounter is provided
Light clusters in nuclear matter of finite temperature
We investigate properties and the distribution of light nuclei (A<4) in
symmetric nuclear matter of finite temperature within a microscopic framework.
For this purpose we have solved few-body Alt-Grassberger-Sandhas type equations
for quasi-nucleons that include self-energy corrections and Pauli blocking in a
systematic way. In a statistical model we find a significant influence in the
composition of nuclear matter if medium effects are included in the microscopic
calculation of nuclei. If multiplicities are frozen out at a certain time (or
volume), we expect significant consequences for the formation of light
fragments in a heavy ion collision. As a consequence of the systematic
inclusion of medium effects the ordering of multiplicities becomes opposite to
the law of mass action of ideal components. This is necessary to explain the
large abundance of -particles in a heavy ion collision that are
otherwise largely suppressed in an ideal equilibrium scenario.Comment: 9 pages, 9 figures, epja-style file
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Spontaneous transport barrier generation at the edge of a magnetically
confined plasma is investigated. To this end, a model of electrostatic
turbulence in three-dimensional geometry is extended to account for the impact
of friction between trapped and passing particles on the radial electric field.
Non-linear flux-driven simulations are carried out, and it is shown that
considering the radial and temporal variations of the neoclassical friction
coefficients allows for a transport barrier to be generated above a threshold
of the input power
Experimental studies of Strong Electroweak Symmetry Breaking in gauge boson scattering and three gauge boson production
If no light Higgs boson exist, the interaction among the gauge bosons becomes
strong at high energies (~1TeV). The effects of strong electroweak symmetry
breaking (SEWSB) could manifest themselves as anomalous couplings before they
give rise to new physical states, thus measurement of all couplings and their
possible deviation from Standard Model (SM) values could give valuable
information for understanding the true nature of symmetry breaking sector. Here
we present a detailed study of the measurement of quartic gauge couplings in
weak boson scattering processes and a possibility for same measurement in
triple weak boson production. Expected limits on the parameters alpha_4
alpha_5,alpha_6, alpha_7 and alpha_10 in electroweak chiral Lagrangian are
given.Comment: talk presented at LCWS05, Stanford, USA, March 200
Effective T-odd P-even hadronic interactions from quark models
Tests of time reversal symmetry at low and medium energies may be analyzed in
the framework of effective hadronic interactions. Here, we consider the quark
structure of hadrons to make a connection to the more fundamental degrees of
freedom. It turns out that for P-even T-odd interactions hadronic matrix
elements evaluated in terms of quark models give rise to factors of 2 to 5.
Also, it is possible to relate the strength of the anomalous part of the
effective rho-type T-odd P-even tensor coupling to quark structure effects.Comment: 6 pages, 1 figure, RevTe
Medium corrections in the formation of light charged particles in heavy ion reactions
Within a microscopic statistical description of heavy ion collisions, we
investigate the effect of the medium on the formation of light clusters. The
dominant medium effects are self-energy corrections and Pauli blocking that
produce the Mott effect for composite particles and enhanced reaction rates in
the collision integrals. Microscopic description of composites in the medium
follows the Dyson equation approach combined with the cluster mean-field
expansion. The resulting effective few-body problem is solved within a properly
modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a
Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and
spectra of light charged particles emerging from a heavy ion collision changes
in a significant manner in effect of the medium modification of production and
absorption processes.Comment: 16 pages, 6 figure
Few-Body States in Fermi-Systems and Condensation Phenomena
Residual interactions in many particle systems lead to strong correlations. A
multitude of spectacular phenomenae in many particle systems are connected to
correlation effects in such systems, e.g. pairing, superconductivity,
superfluidity, Bose-Einstein condensation etc. Here we focus on few-body bound
states in a many-body surrounding.Comment: 10 pages, proceedings 1st Asian-Pacific Few-Body Conference, needs
fbssuppl.sty of Few-Body System
An overview of the thematic mapper geometric correction system
Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system
- …