127 research outputs found
Resistance of a compartmented surface-effect ship
A series of carefully controlled experiments on the resistance of a model of a compartmented surface-effect ship has been conducted in a towing tank. Configurations of the model included cases encompassing one subcushion and two subcushions, as well as differing values of the pressures in the subcushions. It was shown that a reduced total resistance in the appropriate range of Froude number could be achieved in this manner. Furthermore, the previously developed theory for the resistance of a surface-effect ship was verified for the model for a Froude number greater than 0.40
Reference to the index of the miscellaneous Launceston land deeds (1823-1854, of Shields, Heritage, Stackhouse & Martin, solicitors of Launceston.
Miscellaneous documents from the office of Shields, Heritage, Stackhouse & Martin, solicitors of Launceston, mainly deeds of earlier solicitors Gleadow & Henty, etc., relating to land in the Launceston district, including property of Philip Oakden, Adam Beveridge, J. & W. Manifold and Robert Legge, etc., and claimed by R. Dry
SARS-CoV-2 mutations affect antigen processing by the proteasome to alter CD8+ T cell responses
Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design
LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis inArabidopsis
Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants
Are the Dietary Guidelines for Meat, Fat, Fruit and Vegetable Consumption Appropriate for Environmental Sustainability? A Review of the Literature
This paper reviews the current literature around the environmental impacts of dietary recommendations. The focus of the review is on collating evidence relating to environmental impacts of the dietary advice found in the World Health Organisation guidelines, and environmental impact literature: reducing the consumption of fat, reducing the consumption of meat-based protein and animal-based foods, and increasing the consumption of fruit and vegetables. The environmental impact of reducing dietary fat intake is unclear, although reducing consumption of the food category of edible fats and oils appears to have little impact. However most, but not all, studies support environmental benefits of a reduced consumption of animal-based foods and increased consumption of fruit and vegetables. In general, it appears that adhering to dietary guidelines reduces impact on the environment, but further study is required to examine the environmental impacts of animal-based foods, and fruit and vegetable intake in depth
The Duration of Antigen-Stimulation Significantly Alters the Diversity of Multifunctional CD4 T Cells Measured by Intracellular Cytokine Staining
The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ+ only response. This was observed in both murine and cattle models
Selinexor in Advanced, Metastatic Dedifferentiated Liposarcoma: A Multinational, Randomized, Double-Blind, Placebo-Controlled Trial
PURPOSE Antitumor activity in preclinical models and a phase I study of patients with dedifferentiated liposarcoma (DD-LPS) was observed with selinexor. We evaluated the clinical benefit of selinexor in patients with previously treated DD-LPS whose sarcoma progressed on approved agents. METHODS SEAL was a phase II-III, multicenter, randomized, double-blind, placebo-controlled study. Patients age 12 years or older with advanced DD-LPS who had received two-five lines of therapy were randomly assigned (2:1) to selinexor (60 mg) or placebo twice weekly in 6-week cycles (crossover permitted). The primary end point was progression-free survival (PFS). Patients who received at least one dose of study treatment were included for safety analysis (ClinicalTrials.gov identifier: ). RESULTS Two hundred eighty-five patients were enrolled (selinexor, n = 188; placebo, n = 97). PFS was significantly longer with selinexor versus placebo: hazard ratio (HR) 0.70 (95% CI, 0.52 to 0.95; one-sided P = .011; medians 2.8 v 2.1 months), as was time to next treatment: HR 0.50 (95% CI, 0.37 to 0.66; one-sided P < .0001; medians 5.8 v 3.2 months). With crossover, no difference was observed in overall survival. The most common treatment-emergent adverse events of any grade versus grade 3 or 4 with selinexor were nausea (151 [80.7%] v 11 [5.9]), decreased appetite (113 [60.4%] v 14 [7.5%]), and fatigue (96 [51.3%] v 12 [6.4%]). Four (2.1%) and three (3.1%) patients died in the selinexor and placebo arms, respectively. Exploratory RNA sequencing analysis identified that the absence of CALB1 expression was associated with longer PFS with selinexor compared with placebo (median 6.9 v 2.2 months; HR, 0.19; P = .001). CONCLUSION Patients with advanced, refractory DD-LPS showed improved PFS and time to next treatment with selinexor compared with placebo. Supportive care and dose reductions mitigated side effects of selinexor. Prospective validation of CALB1 expression as a predictive biomarker for selinexor in DD-LPS is warranted. (C) 2022 by American Society of Clinical Oncolog
Australian Aboriginal Ethnometeorology and Seasonal Calendars
This paper uses a cultural anthropological approach to investigate an indigenous Australian perspective on atmospheric phenomena and seasons, using data gained from historical records and ethnographic fieldwork. Aboriginal people believe that the forces driving the weather are derived from Creation Ancestors and spirits, asserting that short term changes are produced through ritual. By recognizing signals such as wind direction, rainfall, temperature change, celestial movements, animal behaviour and the flowering of plants, Aboriginal people are able to divide the year into seasons. Indigenous calendars vary widely across Australia and reflect annual changes within Aboriginal lifestyles
An immunodominant NP105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease.
Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Chinese Academy of Medical Sciences (CAMS); doi: https://doi.org/10.13039/501100005150Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design
- …