216 research outputs found

    Statistical effects of dose deposition in track-structure modelling of radiobiology efficiency

    Get PDF
    Ion-induced cell killing has been reported to depend on the irradiation dose but also on the projectile parameters. In this paper we focus on two approaches developed and extensively used to predict cell survival in response to ion irradiation: the Local Effect Model and the Katz Model. These models are based on a track-structure description summarized in the concept of radial dose. This latter is sensitive to ion characteristics parameters and gives to both models the ability to predict some important radiobiological features for ion irradiations. Radial dose is however an average quantity, which does not include stochastic effects. These radiation-intrinsic effects are investigated by means of a Monte-Carlo simulation of dose deposition. We show that both models are not fully consistent with the nanometric and microscopic dose deposition statistics.Comment: 32 pages ; 8 figure

    Louis-Ferdinand Céline, literary genius or national pariah? Defining moral parameters for influential cultural figures, post- Charlie Hebdo

    Get PDF
    In January 2011 the French Minister of Culture, Frédéric Mitterrand, withdrew Louis-Ferdinand Céline from a list of famous French authors specifically selected for a national celebration of culture. This bold decision polarized opinion: while many welcomed Mitterrand’s intervention, a number of prominent writers, some of them Jewish, opposed it on the grounds that Céline’s abhorrent political beliefs – expressed in three anti-Semitic pamphlets and his flirtation with Nazism- should in no way detract from his literary genius. In the light of this controversy, and of the rise in anti-Semitism following the Charlie Hebdo attacks of January 2015, this paper proposes Céline as a vital case study of the moral parameters a democratic nation should apply to a culturally important figure whose political views are deemed unacceptably reactionary

    Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules.

    Get PDF
    Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS: Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION: We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation

    Virus preparations from the mixed-infected P70 Pinot Noir accession exhibit GLRaV-1/GVA ‘end-to-end’ particles

    Get PDF
    P70 is a Pinot Noir grapevine accession that displays strong leafroll disease symptoms. A high-throughput sequencing (HTS)-based analysis established that P70 was mixed-infected by two variants of grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus) and one of grapevine virus A (GVA, genus Vitivirus) as well as by two viroids (hop stunt viroid [HSVd] and grapevine yellow speckle viroid 1 [GYSVd1]) and four variants of grapevine rupestris stem pitting-associated virus (GRSPaV). Immunogold labelling using gold particles of two different diameters revealed the existence of ‘hybrid’ particles labelled at one end as GLRaV-1, with the rest labelled as GVA. In this work, we suggest that immunogold labelling can provide information about the biology of the viruses, going deeper than just genomic information provided by HTS, from which no recombinant or ‘chimeric’ GLRaV-1/GVA sequences had been identified in the dataset. Our observations suggest an unknown interaction between members of two different viral species that are often encountered together in a single grapevine, highlighting potential consequences in the vector biology and epidemiology of leafroll and rugose-wood diseases

    Consistency checks of results from a Monte Carlo code intercomparison for emitted electron spectra and energy deposition around a single gold nanoparticle irradiated by X-rays

    Get PDF
    Organized by the European Radiation Dosimetry Group (EURADOS), a Monte Carlo code intercomparison exercise was conducted where participants simulated the emitted electron spectra and energy deposition around a single gold nanoparticle (GNP) irradiated by X-rays. In the exercise, the participants scored energy imparted in concentric spherical shells around a spherical volume filled with gold or water as well as the spectral distribution of electrons leaving the GNP. Initially, only the ratio of energy deposition with and without GNP was to be reported. During the evaluation of the exercise, however, the data for energy deposition in the presence and absence of the GNP were also requested. A GNP size of 50 nm and 100 nm diameter was considered as well as two different X-ray spectra (50 kVp and 100 kVp). This introduced a redundancy that can be used to cross-validate the internal consistency of the simulation results. In this work, evaluation of the reported results is presented in terms of integral quantities that can be benchmarked against values obtained from physical properties of the radiation spectra and materials involved. The impact of different interaction cross-section datasets and their implementation in the different Monte Carlo codes is also discussed

    Receptor guanylyl cyclase (RGC) family (version 2020.3) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The mammalian genome encodes seven guanylyl cyclases, GC-A to GC-G, that are homodimeric transmembrane receptors activated by a diverse range of endogenous ligands. These enzymes convert guanosine-5'-triphosphate to the intracellular second messenger cyclic guanosine-3',5'-monophosphate (cyclic GMP). GC-A, GC-B and GC-C are expressed predominantly in the cardiovascular system, skeletal system and intestinal epithelium, respectively. GC-D and GC-G are found in the olfactory neuropepithelium and Grueneberg ganglion of rodents, respectively. GC-E and GC-F are expressed in retinal photoreceptors

    Receptor guanylyl cyclase (RGC) family in GtoPdb v.2023.1

    Get PDF
    The mammalian genome encodes seven guanylyl cyclases, GC-A to GC-G, that are homodimeric transmembrane receptors activated by a diverse range of endogenous ligands. These enzymes convert guanosine-5'-triphosphate to the intracellular second messenger cyclic guanosine-3',5'-monophosphate (cyclic GMP). GC-A, GC-B and GC-C are expressed predominantly in the cardiovascular system, skeletal system and intestinal epithelium, respectively. GC-D and GC-G are found in the olfactory neuropepithelium and Grueneberg ganglion of rodents, respectively. GC-E and GC-F are expressed in retinal photoreceptors

    The Concise Guide to PHARMACOLOGY 2023/24:Catalytic receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity

    Get PDF
    Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC
    • …
    corecore