35 research outputs found

    New Insights of Infiltration Process of Argyrodite Li6PS5Cl Solid Electrolyte into Conventional Lithium-Ion Electrodes for Solid-State Batteries

    Get PDF
    All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question related to the sulfide electrode’s fabrication by simply infiltrating methods applied for conventional lithium-ion battery electrodes via homogeneous solid electrolyte solutions, the structure of electrolytes after drying, chemical stability of binders and electrolyte, the surface morphology of electrolyte, and the deepening of the infiltrated electrolyte into the active materials to provide better contact between the active material and electrolyte and favorable lithium ionic conduction. However, due to the high reactivity of sulfide-based solid electrolytes, unwanted side reactions between sulfide electrolytes and polar solvents may occur. In this work, we explore the chemical and electrochemical properties of the argyrodite-based film produced by infiltration mode by combining electrochemical and structural characterizations

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes

    Get PDF
    Promoting safer and more cost-effective lithium-ion battery manufacturing practices, while also advancing recycling initiatives, is intrinsically tied to reducing reliance on fluorinated polymers like polyvinylidene difluoride (PVDF) as binders and minimizing the use of hazardous and expensive solvents such as N-methyl pyrrolidone (NMP). In pursuit of this objective, olefin- and rubber-based polymers have been investigated as promising alternatives for binder materials in high-energy Ni-rich LiNixCoyMnzO2 (NCM, x≥0.8) cathodes for lithium-ion batteries (LIBs). Alternative binders such as polyisobutylene (PIB), poly(styrene-butadiene-styrene) (SBS), nitrile butadiene rubber (NBR), and its hydrogenated version (HNBR) offer versatile solutions. These polymers can be dissolved in industrial solvents, such as toluene, and have been further processed into homogeneous cathode slurries, thus facilitating the manufacturing of high-energy Ni-rich NCM cathodes for lithium-ion batteries. The evaluation of NCM811 cathodes obtained from PIB, SBS, NBR, and HNBR has involved a thorough assessment of their physical and chemical properties, electrochemical performance, and production expenses, compared with NCM811 cathodes based on PVDF. Notably, cathodes employing PIB and HNBR have exhibited outstanding qualities, showcasing high specific capacity and remarkable electrochemical stability akin to PVDF-based counterparts. Furthermore, the alternative binders′ superior adhesion, elasticity, and thermal stability have facilitated obtaining uniform and mechanically stable cathode films. Furthermore, using toluene, with its low vapor pressure, has significantly reduced energy costs associated with drying processes, thereby enhancing the overall cost-effectiveness of the NCM811 cathodes

    The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)

    Full text link
    Static and dynamic changes induced by adsorption of atomic hydrogen on the NiAl(110) lattice at 130 K have been examined as a function of adsorbate coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages the hydrogen is itinerant because of quantum tunneling between sites and exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate mediated interactions produce an ordered superstructure with c(2x2) symmetry, and at higher coverages, hydrogen exists as a disordered lattice gas. This picture of how hydrogen interacts with NiAl(110) is developed from our data and compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference

    Film processing of Li6PS5Cl electrolyte using different binders and their combinations

    Get PDF
    The development of solid electrolytes has made significant progress in the last decade. Among the most promising materials, sulfide-based electrolytes show high ionic conductivities and low densities, and their precursors are abundant. For industrially relevant battery cells, sulfide electrolytes need to be processed to form thin electrolyte sheets that are either directly applied to the electrodes as coatings or prepared as stand-alone films. Thus, processing of sulfide electrolyte powders has recently drawn much attention as it seems to be one of the major challenges in realizing sulfide-based all-solid-state batteries. In this work, six different binders (NBR, HNBR, PIB, PBMA, SBS, SEBS) were selected for preparation of electrolyte films using Li6PS5Cl as a sulfidic model compound. The influence of the binders on the electrochemical performance as well as on the mechanical properties of the resulting films was investigated. In addition, binder blends were explored as a vial approach to optimize the properties of the electrolyte films. Special focus was put on elucidating the relation between the physico-chemical properties of the binder materials and the resulting electrochemical and mechanical properties of the electrolyte films

    Optimizing Current Collector Interfaces for Efficient “Anode-Free” Lithium Metal Batteries

    Get PDF
    Current lithium (Li)-metal anodes are not sustainable for the mass production of future energy storage devices because they are inherently unsafe, expensive, and environmentally unfriendly. The anode-free concept, in which a current collector (CC) is directly used as the host to plate Li-metal, by using only the Li content coming from the positive electrode, could unlock the development of highly energy-dense and low-cost rechargeable batteries. Unfortunately, dead Li-metal forms during cycling, leading to a progressive and fast capacity loss. Therefore, the optimization of the CC/electrolyte interface and modifications of CC designs are key to producing highly efficient anode-free batteries with liquid and solid-state electrolytes. Lithiophilicity and electronic conductivity must be tuned to optimize the plating process of Li-metal. This review summarizes the recent progress and key findings in the CC design (e.g. 3D structures) and its interaction with electrolytes

    Hybrid electrolytes for lithium-ion batteries

    No full text
    Lithium-ion batteries (LIBs) are playing a central role in the transition to a postoil society. Solid-state electrolytes are considered a promising technology to achieve high energy density (500Wh/kg) by implementing Li metal as anode material, as well as to overcome the safety concerns related to the liquid electrolytes used in LIBs. In this chapter, the limitations of traditional polymer solid electrolytes and the recent advances in hybrid solid electrolytes (e.g., composite solid electrolytes) will be reported. Furthermore, the effects of the inorganic filler (e.g., concentration, particle size, morphology, etc.) on Li+ ions’ conduction mechanism will be elucidated. Finally, the advantages of the use of ionic liquids will also be introduced
    corecore