18 research outputs found

    Potential Nutritional Benefits of Current Citrus Consumption

    No full text
    Citrus contains nutrients and phytochemicals that may be beneficial for health. We collected citrus production and consumption data and estimated the amount of these compounds that are consumed. We then compared the amounts of citrus and citrus-derived compounds used in studies that suggest a health benefit to the amounts typically found in citrus. Data is scarce, but suggests that citrus consumption might improve indices of antioxidant status, and possibly cardiovascular health and insulin sensitivity

    Biofortified cassava increases β-carotene and vitamin A concentrations in the TAG-rich plasma layer of American women

    Get PDF
    Biofortification of cassava with the provitamin A carotenoid β-carotene is a potential mechanism for alleviating vitamin A deficiency. Cassava is a staple food in the African diet, but data regarding the human bioavailability of b-carotene from this food are scarce. The objective of the present study was to evaluate provitamin A-enhanced cassava as a source of β-carotene and vitamin A for healthy adult women. The study was a randomised, cross-over trial of ten American women. The subjects consumed three different porridges separated by 2 week washout periods. Treatment meals (containing 100 g cassava) included: biofortified cassava (2mg β-carotene) porridge with added oil (15 ml peanut or rapeseed oil, 20 g total fat); biofortified cassava porridge without added oil (6 g total fat); unfortified white cassava porridge with a 0·3 mg retinyl palmitate reference dose and added oil (20 g total fat). Blood was collected six times from 20·5 to 9·5 h post-feeding. TAG-rich lipoprotein (TRL) plasma was separated by ultracentrifugation and analysed using HPLC with coulometric array electrochemical detection. The AUC for retinyl palmitate increased after the biofortified cassava meals were fed (P,0·05). Vitamin A conversion was 4·2 (SD 3·1) and 4·5 (SD 3·1) μg β-carotene:1 μg retinol, with and without added oil, respectively. These results show that biofortified cassava increases β-carotene and retinyl palmitate TRL plasma concentrations in healthy well-nourished adult women, suggesting that it is a viable intervention food for preventing vitamin A deficiency

    Citrus can help prevent vitamin A deficiency in developing countries

    No full text
    California is a major producer of tangerines and oranges, which contain carotenoids that form vitamin A. Deficiencies of this vitamin are common in southern Asia and Africa, causing blindness and more than one-half million deaths each year. We evaluated the potential of tangerines and oranges to prevent vitamin A deficiency worldwide by measuring their carotenoid concentrations, estimating the amounts needed to meet the recommended safe nutrient intake for vitamin A and determining their availability in countries with vitamin A deficiency. We conclude that tangerines — particularly Satsuma mandarins, which have high concentrations of the carotenoid beta-cryptoxanthin — but not oranges, could be useful in preventing vitamin A deficiency, though not as the sole source

    How to Convert Biological Carbon Into Graphite for AMS

    Get PDF
    Isotope tracer studies, particularly radiocarbon measurements, play a key role in biological, nutritional, and environmental research. Accelerator mass spectrometry (AMS) is now the most sensitive detection method for 14C, but AMS is not widely used in kinetic studies of humans. Part of the reason is the expense, but costs would decrease if AMS were used more widely. One component in the cost is sample preparation for AMS. Biological and environmental samples are commonly reduced to graphite before they are analyzed by AMS. Improvements and mechanization of this multistep procedure is slowed by a lack of organized educational materials for AMS sample preparation that would allow new investigators to work with the technique without a substantial outlay of time and effort. We present a detailed sample preparation protocol for graphitizing biological samples for AMS and include examples of nutrition studies that have used this procedure.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    How to convert biological carbon into graphite for AMS How to convert biological carbon into graphite for AMS

    No full text
    Abstract Isotope tracer studies, particularly radiocarbon measurements, play a key role in biological, nutritional, and environmental research. Accelerator mass spectrometry (AMS) is now the most sensitive detection method for radiocarbon, but AMS is not widely used in kinetic studies of humans. Part of the reason is the expense, but costs would decrease if AMS were used more widely. One component in the cost is sample preparation for AMS. Biological and environmental samples are commonly reduced to graphite before they are analyzed by AMS. Improvements and mechanization of this multi-step procedure is slowed by a lack of organized educational materials for AMS sample preparation that would allow new investigators to work with the technique without a substantial outlay of time and effort. We present a detailed sample preparation protocol for graphitizing biological samples for AMS and include examples of nutrition studies that have used this procedure
    corecore