926 research outputs found

    The effects of aging on orientation discrimination

    Get PDF
    AbstractThe current experiments measured orientation discrimination thresholds in younger (mean age≈23 years) and older (mean age≈66 years) subjects. In Experiment 1, the contrast needed to discriminate Gabor patterns (0.75, 1.5, and 3c/deg) that differed in orientation by 12deg was measured for different levels of external noise. At all three spatial frequencies, discrimination thresholds were significantly higher in older than younger subjects when external noise was low, but not when external noise was high. In Experiment 2, discrimination thresholds were measured as a function of stimulus contrast by varying orientation while contrast was fixed. The resulting threshold-vs-contrast curves had very similar shapes in the two age groups, although the curve obtained from older subjects was shifted to slightly higher contrasts. At contrasts greater than 0.05, thresholds in both older and younger subjects were approximately constant at 0.5deg. The results from Experiments 1 and 2 suggest that age differences in orientation discrimination are due solely to differences in equivalent input noise. Using the same methods as Experiment 1, Experiment 3 measured thresholds in 6 younger observers as a function of external noise and retinal illuminance. Although reducing retinal illumination increased equivalent input noise, the effect was much smaller than the age difference found in Experiment 1. Therefore, it is unlikely that differences in orientation discrimination were due solely to differences in retinal illumination. Our findings are consistent with recent physiological experiments that have found elevated spontaneous activity and reduced orientation tuning on visual cortical neurons in senescent cats (Hua, T., Li, X., He, L., Zhou, Y., Wang, Y., Leventhal, A. G. (206). Functional degradation of visual cortical cells in old cats. Neurobiology Aging, 27(1), 155–162) and monkeys (Yu, S., Wang, Y., Li, X., Zhou, Y. & Leventhal, A. G. (2006). Functional degradation of visual cortex in senescent rhesus monkeys. Neuroscience, 140(3), 1023–1029; Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y. & Ma. Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science,300 (5620), 812–815)

    Distributed neural plasticity for shape learning in the human visual cortex.

    Get PDF
    Expertise in recognizing objects in cluttered scenes is a critical skill for our interactions in complex environments and is thought to develop with learning. However, the neural implementation of object learning across stages of visual analysis in the human brain remains largely unknown. Using combined psychophysics and functional magnetic resonance imaging (fMRI), we show a link between shape-specific learning in cluttered scenes and distributed neuronal plasticity in the human visual cortex. We report stronger fMRI responses for trained than untrained shapes across early and higher visual areas when observers learned to detect low-salience shapes in noisy backgrounds. However, training with high-salience pop-out targets resulted in lower fMRI responses for trained than untrained shapes in higher occipitotemporal areas. These findings suggest that learning of camouflaged shapes is mediated by increasing neural sensitivity across visual areas to bolster target segmentation and feature integration. In contrast, learning of prominent pop-out shapes is mediated by associations at higher occipitotemporal areas that support sparser coding of the critical features for target recognition. We propose that the human brain learns novel objects in complex scenes by reorganizing shape processing across visual areas, while taking advantage of natural image correlations that determine the distinctiveness of target shapes

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Vaccination with Ad5 Vectors Expands Ad5-Specific CD8+ T Cells without Altering Memory Phenotype or Functionality

    Get PDF
    Adenoviral (Ad) vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+) T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+) T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone.Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5)-specific CD8(+) T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+) T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+) T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb) seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+) T-cells.These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+) T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1].ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680]

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure

    System size and energy dependence of near-side di-hadron correlations

    Get PDF
    Two-particle azimuthal (Δϕ\Delta\phi) and pseudorapidity (Δη\Delta\eta) correlations using a trigger particle with large transverse momentum (pTp_T) in dd+Au, Cu+Cu and Au+Au collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both Δϕ\Delta\phi and Δη\Delta\eta, and the ridge, narrow in Δϕ\Delta\phi but broad in Δη\Delta\eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated pTp_T. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at sNN\sqrt{s_{{NN}}} = 200 GeV, is also found in Cu+Cu collisions and in collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV, but is found to be substantially smaller at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV than at sNN\sqrt{s_{{NN}}} = 200 GeV for the same average number of participants (Npart \langle N_{\mathrm{part}}\rangle). Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.
    corecore