754 research outputs found

    Fast neutron induced resistivity changes in order-disorder Fe₃Al

    Get PDF
    Resistivity measurements were made of ordered, disordered and intermediate states of order-disordered specimens of Fe₃Al while being irradiated by neutrons. All the specimens were irradiated at ambient temperature, approximately 35°C in a modified Bulk Shielding Swimming Pool type reactor. The ordered and near ordered specimens increased in resistivity indicating disordering whereas the disordered and near disordered specimens decreased in resistivity indicating an ordering process was occuring [sic]. By extrapolation, an equilibrium condition was determined and estimated at 130-135 micro-ohms-cm resistivity that would remain constant during irradiation because the ordering and disordering affects of neutron irradiation would be in equilibrium --Abstract, page ii

    Implications of high-spatial-resolution thermal infrared (Termoskan) data for Mars landing site selection

    Get PDF
    Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection

    Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow

    Get PDF
    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobos '88 Termoskan instrument. The best observed shadow occurrence was on the flanks of Arsia Mons. For this occurrence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J m^(−2) s^(−1)/2 K^(−1) (0.9 to 1.4 10−3 cal cm^(−2) s^(−1)/2 K^(−1)), corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a current area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurrence. We also analyzed a shadow occurrence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobos' shadow, and suggest that they will be most useful if they improve upon Termoskan's geographic and temporal coverage and its accuracy

    Thermal studies of Martian channels and valleys using Termoskan data

    Get PDF
    The Termoskan instrument on board the Phobos '88 spacecraft acquired the highest spatial resolution thermal infrared emission data ever obtained for Mars. Included in the thermal images are 2 km/pixel, midday observations of several major channel and valley systems including significant portions of Shalbatana, Ravi, Al-Qahira, and Ma'adim Valles, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broadband visible reflectance data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher thermal inertias than their surroundings, consistent with previous thermal studies. We show for the first time that the thermal inertia boundaries closely match flat channel floor boundaries. Also, buttes within channels have inertias similar to the plains surrounding the channels, suggesting the buttes are remnants of a contiguous plains surface. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10^(−3) cal cm^(−2) s^(−1/2) K^(−1)) (352 to 523 in SI units of J m^(−2) s^(−1/2) K^(−1)). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 SI). Atmospheric and geometric effects are not sufficient to cause the observed channel inertia enhancements. We favor nonaeolian explanations of the overall channel inertia enhancements based primarily upon the channel floors' thermal homogeneity and the strong correlation of thermal boundaries with floor boundaries. However, localized, dark regions within some channels are likely aeolian in nature as reported previously. Most channels with increased inertias have fretted morphologies such as flat floors with steep walls. Eastern Ravi and southern Ares Valles, the only major channel sections observed that have obvious catastrophic flood bedforms, do not have enhanced inertias. Therefore, we favor fretting processes over catastrophic flooding for explaining the inertia enhancements. We postulate that the inertia enhancements were caused either by the original fretting process or by a process involving the bonding of fines due to an increased availability of water, either initially or secondarily

    Thermally distinct ejecta blankets from Martian craters

    Get PDF
    Utilizing the Termoskan data set of the Phobos '88 mission we have recognized a new feature on Mars: ejecta blanket distinct in the thermal infrared (EDITH). Virtually all of the more than 100 features discovered in the Termoskan data are located on the plains near Valles Marineris. EDITHs have a startlingly clear dependence upon terrains of Hesperian age, implying a spatial or temporal dependence on Hesperian terrains. Almost no thermally distinct ejecta blankets are associated with any of the thousands of craters within the data set that occur on the older Noachian units. EDITHs also do not appear on the portions of the younger Tharsis Amazonian units seen in the data. The Hesperian terrain dependence cannot be explained by either atmospheric or impactor variations; Noachian and Hesperian terrains must have experienced identical atmospheric and impactor conditions during Hesperian times. Thermally distinct ejecta blankets therefore reflect target material differences and/or secondary modification processes. Not all lobate ejecta blankets are thermally distinct, but all EDITHs correlated with visibly discernible ejecta blankets are associated with lobate ejecta blankets. The boundaries of the thermally distinct areas usually follow closely the termini of the fluidized lobate ejecta blankets, even when the ejecta blankets show a high degree of sinuosity. Thus, the thermally distinct nature of EDITHs must be due to the primary ejecta formation process. The coupling of these thermal anomalies to morphology is unlike most sharp Martian inertia variations which are decoupled from observed surface morphology. Some thermally distinct ejecta blankets occur near otherwise similar craters that do not have thermally distinct ejecta blankets. Thus, wind patterns or locally available aeolian material cannot provide a single overall explanation for the observed variations. We compiled a data base of 110 EDITH and non-EDITH craters ranging in diameter from 4.2 km to 90.6 km. There are almost no correlations within the data base other than occurrence on Hesperian terrains. We postulate that most of the observed EDITHs are due to excavation of thermally distinctive Noachian age material from beneath a relatively thin layer of younger, more consolidated Hesperian volcanic material. The plausibility of this theory is supported by much geological evidence for relatively thin near-surface Hesperian deposits overlying massive Noachian megabreccias on the EDITH-rich plains units. We suggest that absence of thermally distinct ejecta blankets on Noachian and Amazonian terrains is due to absences of distinctive near-surface layering. Thermally distinct ejecta blankets are excellent locations for future landers and remote sensing because of relatively dust free surface exposures of material excavated from depth

    The LightSail 2 Solar Sailing Mission Summary

    Get PDF
    The LightSail 2 mission concluded a 3-year mission in November 2022, having successfully demonstrated controlled solar sailing in low-Earth orbit using a CubeSat platform. Flight data show that LightSail 2 successfully controlled its orientation relative to the Sun, with sustained periods of apogee raising and increasing orbital energy. The LightSail 2 solar sail was 5.6 m on a side and has a total deployed area of 32 m². Four independent triangular aluminized Mylar® sail sections 4.6 microns thick were Z-folded and stowed into four sail bays. The sail segments were deployed by four 4 m Triangular Retractable And Collapsible booms made of elgiloy. The booms were wound around a common spindle, with deployment driven by a Faulhaber motor containing Hall sensors. Attitude was controlled using a single-axis Sinclair Interplanetary momentum wheel and magnetic torque rods. During solar sailing operations, two 90 degree slews were performed each orbit to harness momentum from solar photons. The thrust from solar radiation pressure measurably reduced the rate of orbital decay, including an extended period of orbit raising. Two Planetary Society Cameras developed by the Aerospace Corporation were mounted at the tips of opposing solar panels, providing imaging for engineering evaluation and public engagement throughout mission operations. This paper provides a summary of the LightSail 2 mission implementation, including the flight system design and the pre-launch test program. LightSail 2 mission operations are described, including discussion of the ground system. Solar sailing performance is presented, and anomalies encountered during the mission are discussed. The Planetary Society\u27s decade-long LightSail program was entirely donor-funded, with over 50,000 contributors worldwide. With a total cost of about $7M for two flight missions, the LightSail program showed that solar sails can provide a cost-effective option for propulsion of CubeSat-class vehicles

    The LightSail 2 Controlled Solar Sailing Demonstration Mission

    Get PDF
    The LightSail 2 mission is the culmination of a decade-long program sponsored by The Planetary Society to advance solar sailing technology. The objective of LightSail 2 is to demonstrate controlled solar sailing in Earth orbit using a CubeSat platform. The LightSail 2 attitude is controlled using a single-axis momentum wheel and magnetic torque rods. During solar sailing operations, two 90 degree slews are performed each orbit to harness momentum from solar photons. Flight data show that LightSail 2 is successfully controlling its orientation relative to the Sun, and the controlled thrust from solar radiation pressure is measurably reducing the rate of orbital decay. The Planetary Society declared LightSail 2 mission success on July 31, 2019. This paper provides an overview of the LightSail 2 mission implementation, including the design of the flight system and flight software, and the pre-launch testing program. A summary of LightSail 2 mission operations is provided, including a description of the ground system. Solar sailing performance is presented, and anomalies encountered during the mission are discussed. The flight team continues to refine solar sailing performance and conduct on-orbit imaging for engineering purposes and to engage public interest. The LightSail program is entirely donor-funded, with over 50,000 contributors around the globe

    Structure of the Claudin-binding Domain of Clostridium perfringens Enterotoxin

    Get PDF
    Clostridium perfringens enterotoxin is a common cause of food-borne and antibiotic-associated diarrhea. The toxin's receptors on intestinal epithelial cells include claudin-3 and -4, members of a large family of tight junction proteins. Toxin-induced cytolytic pore formation requires residues in the NH(2)-terminal half, whereas residues near the COOH terminus are required for binding to claudins. The claudin-binding COOH-terminal domain is not toxic and is currently under investigation as a potential drug absorption enhancer. Because claudin-4 is overexpressed on some human cancers, the toxin is also being investigated for targeting chemotherapy. Our aim was to solve the structure of the claudin-binding domain to advance its therapeutic applications. The structure of a 14-kDa fragment containing residues 194 to the native COOH terminus at position 319 was solved by x-ray diffraction to a resolution of 1.75A. The structure is a nine-strand beta sandwich with previously unappreciated similarity to the receptor-binding domains of several other toxins of spore-forming bacteria, including the collagen-binding domain of ColG from Clostridium histolyticum and the large Cry family of toxins (including Cry4Ba) of Bacillus thuringiensis. Correlations with previous studies suggest that the claudin-4 binding site is on a large surface loop between strands beta8 and beta9 or includes these strands. The sequence that was crystallized (residues 194-319) binds to purified human claudin-4 with a 1:1 stoichiometry and affinity in the submicromolar range similar to that observed for binding of native toxin to cells. Our results provide a structural framework to advance therapeutic applications of the toxin and suggest a common ancestor for several receptor-binding domains of bacterial toxins
    • …
    corecore