21 research outputs found
Why Are We Not Evaluating Multiple CompetingHypotheses in Ecology and Evolution?
The use of multiple working hypotheses to gain strong inference is widely promoted as a means to enhance the effectiveness of scientific investigation. Only 21 of 100 randomly selected studies from the ecological and evolutionary literature tested more than one hypothesis and only eight tested more than two hypotheses. The surprising rarity of application of multiple working hypotheses suggests that this gap between theory and practice might reflect some fundamental issues. Here, we identify several intellectual and practical barriers that discourage us from using multiple hypotheses in our scientific investigation. While scientists have developed a number of ways to avoid biases, such as the use of double-blind controls, we suspect that few scientists are fully aware of the potential influence of cognitive bias on their decisions and they have not yet adopted many techniques available to overcome intellectual and practical barriers in order to improve scientific investigation
Temperature Triggers a Non-Linear Response in Resource–Consumer Interaction Strength
Although temperature is recognized as a major determinant of many ecological processes, it is still not clear whether temperature increase caused by climate change will strengthen or weaken species interactions. One hypothesis is that interactions will respond non‐monotonically to temperature because thermal performance curves, which determine the strength of these interactions, are also non‐monotonic. To evaluate this hypothesis, we developed a temperature‐dependent consumer–resource model and tested predictions from this model in large freshwater mesocosms populated with green algae (Chlorella vulgaris) and herbivorous zooplankton (Daphnia magna). We found both in the model simulations and empirical investigations that the suppressive effect of the consumer depended non‐monotonically on the temperature. As predicted by the model, Daphnia suppressed the algal maximum per capita growth rate at the temperature that maximized algal growth rate but had little effect on resource growth at either lower or higher temperatures. This finding could help explain why effects of temperature variation on species interaction are variable in the literature and suggests that predicting the effects of temperature on the strength of food web interactions requires knowledge of the thermal performance curves for multiple traits, for multiple species and over a range of temperatures
Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna
Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms
Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium
Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change
Development and validation of the trust in multidimensional healthcare systems scale (TIMHSS)
Context: The COVID-19 pandemic has reignited a commitment from the health policy and health services research communities to rebuilding trust in healthcare and created a renewed appetite for measures of trust for system monitoring and evaluation. The aim of the present paper was to develop a multidimensional measure of trust in healthcare that: (1) Is responsive to the conceptual and methodological limitations of existing measures; (2) Can be used to identify systemic explanations for lower levels of trust in equity-deserving populations; (3) Can be used to design and evaluate interventions aiming to (re)build trust.
Methods: We conducted a 2021 review of existing measures of trust in healthcare, 72 qualitative interviews (Aug-Dec 2021; oversampling for equity-deserving populations), an expert review consensus process (Oct 2021), and factor analyses and validation testing based on two waves of survey data (Nov 2021, n = 694; Jan-Feb 2022, n = 740 respectively).
Findings: We present the Trust in Multidimensional Healthcare Systems Scale (TIMHSS); a 38-item correlated three-factor measure of trust in doctors, policies, and the system. Measurement of invariance tests suggest that the TIMHSS can also be reliably administered to diverse populations.
Conclusions: This global measure of trust in healthcare can be used to measure trust over time at a population level, or used within specific subpopulations, to inform interventions to (re)build trust. It can also be used within a clinical setting to provide a stronger evidence base for associations between trust and therapeutic outcomes
Lista comentada das aves do Brasil pelo comite Brasileiro de registros ornitologicos
Since 2005, the Brazilian Ornithological Records Committee (CBRO) has published updated checklists of Brazilian birds almost every year. Herein, we present a completely new and annotated version of our checklist. For the first time, we list all bird subspecies known from Brazil that are currently accepted by at least one key ornithological reference work. The inclusion of the subspecies should be seen as a synthesis, and not as a taxonomic endorsement. As such, we include in the new checklist 1919 avian species, 910 of which are treated as polytypic in reference works (2042 subspecies), totaling 3051 taxa at the species and subspecies level. We anticipate that several of the subspecies included in our list may be subject to future taxonomic upgrades to species status, while others will probably be shown to be invalid in the light of future taxonomic studies. The results highlight Brazil as a megadiverse country and reinforce the need for proper enforcement of political tools, laws and international commitments assumed by the country to preserve its biodiversity. © 2015, Sociedade Brasileira de Ornitologia. All rights reserved
Data from: Calcium interacts with temperature to influence Daphnia movement rates
Predicting the ecological responses to climate change is particularly challenging, because organisms might be affected simultaneously by the synergistic effects of multiple environmental stressors. Global warming is often accompanied by declining calcium concentration in many freshwater ecosystems. Although there is growing evidence that these changes in water chemistry and thermal conditions can influence ecosystem dynamics, little information is currently available about how these synergistic environmental stressors could influence the behaviour of aquatic organisms. Here, we tested whether the combined effects of calcium and temperature affect movement parameters (average speed, mean turning frequency and mean-squared displacement) of the planktonic Daphnia magna, using a full factorial design and exposing Daphnia individuals to a range of realistic levels of temperature and calcium concentration. We found that movement increased with both temperature and calcium concentration, but temperature effects became considerably weaker when individuals were exposed to calcium levels close to survival limits documented for several Daphnia species, signalling a strong interaction effect. These results support the notion that changes in water chemistry might have as strong an effect as projected changes in temperature on movement rates of Daphnia, suggesting that even sublethal levels of calcium decline could have a considerable impact on the dynamics of freshwater ecosystems
Transgenerational plasticity mediates temperature effects on fitness in Daphnia magna
Phenotypic plasticity is an important way by which organisms respond to changes in their local environment, but it is not clear whether parents can buffer the negative impacts of high temperature on offspring fitness. To investigate this question, we exposed the waterflea Daphnia magna (Straus 1820) and their offspring to either low (15oC) or high (25oC) temperature in a crossed factorial design. High parental temperature reduced the age and size at reproductive maturation and resulted in smaller average clutch size, regardless of offspring temperature. This suggests that parents did not buffer the effects of high temperature on their offspring. However, offspring raised at high temperature that came from parents also raised at high temperature had similar adult body size and longer life span than offspring produced by parents exposed to low temperature. As a consequence of these apparent trade-offs, there was no detectable effect of parental temperature on offspring life time reproductive success. These results suggest that although transgenerational plasticity could help organisms to cope with stressful changes in their local environment, such effects might be difficult to detect in natural populations due to associated life history trade-offs.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Data from: Density-mediated carry-over effects explain variation in breeding output across time in a seasonal population
In seasonal environments, where density dependence can operate throughout the annual cycle, vital rates are typically considered to be a function of the number of individuals at the beginning of each season. However, variation in density in the previous season could also cause surviving individuals to be in poor physiological condition, which could carry over to influence individual success in the following season. We examine this hypothesis using replicated populations of Drosophila melanogaster, the common fruitfly, over 23 non-overlapping generations with distinct breeding and non-breeding seasons. We found that the density at the beginning of the non-breeding season negatively affected the fresh weight of individuals that survived the non-breeding season and resulted in a 25% decrease in per capita breeding output among those that survived to the next season to breed. At the population level, per capita breeding output was best explained by a model that incorporated density at the beginning of the previous non-breeding season (carry-over effect, COE) and density at the beginning of the breeding season. Our results support the idea that density-mediated COEs are critical for understanding population dynamics in seasonal environments
Mortality, reproduction and body mass data used in paper
The reproduction tab has reproduction data. The mortality tag has mortality data. The weight tab has body mass data