17 research outputs found

    High-pressure equations of state and phase diagrams of molecular H-C-N-O compounds

    Get PDF
    The thermodynamic description of molecular systems composed of water, ammonia, and methane at high pressure up to 1 TPa is the subject of this thesis. The focus lies on the calculation of equations of state, phase diagrams, and their characterization by employing the quantum-statistical method density functional theory molecular dynamics. In particular superionic phases are investigated using evolutionary structure searching and the linear mixing approximation is validated. The obtained simulation results serve as input for modeling the interior structure of giant planets such as Uranus.Die thermodynamische Beschreibung komplexer Gemische bestehend aus Wasser, Ammoniak und Methan unter hohem Druck bis zu 1 TPa ist Gegenstand dieser Arbeit. Dabei liegt der Fokus auf der Berechnung von Zustandsgleichungen, Phasendiagrammen und deren Charakterisierung mittels Dichtefunktionaltheorie-Molekulardynamik. Insbesondere werden superionische Phasen mit Hilfe von evolutionary structure searching untersucht und die Näherung der linearen Mischung validiert. Die erhaltenen Simulationsergebnisse dienen als Eingabeparameter für die Modellierung des inneren Aufbaus großer Planeten wie Uranus

    Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs

    Full text link
    We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive \textit{ab initio} simulations of hydrogen-helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k2k_2 and the equidistance are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations

    X-ray Thomson scattering spectra from DFT-MD simulations based on a modified Chihara formula

    Full text link
    We study state-of-the-art approaches for calculating x-ray Thomson scattering spectra from density functional theory molecular dynamics (DFT-MD) simulations based on a modified Chihara formula that expresses the inelastic contribution in terms of the dielectric function. We compare the electronic dynamic structure factor computed from the Mermin dielectric function using an ab initio electron-ion collision frequency to computations using a linear response time dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of these contributions in the Mermin dielectric function shows excellent agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with traditional analytic models at small scattering angles.Comment: 14 pages, 10 figures, submitted to Physical Review

    Carbon ionization at Gbar pressures: an ab initio perspective on astrophysical high-density plasmas

    Full text link
    A realistic description of partially-ionized matter in extreme thermodynamic states is critical to model the interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential property, the ionization degree, rely widely on analytical approximations that have been challenged recently by a series of experiments. Here, we propose a novel ab initio approach to calculate the ionization degree directly from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This Density Functional Theory framework captures genuinely the condensed matter nature and quantum effects typical for strongly-correlated plasmas. We demonstrate this new capability for carbon and hydrocarbon, which most notably serve as ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the qualitative behavior of the average atom model Purgatorio. Additionally, we find the carbon ionization state to remain unchanged in the environment of fully-ionized hydrogen. Our results will not only serve as benchmark for traditional models, but more importantly provide an experimentally accessible quantity in the form of the electrical conductivity.Comment: accepted for publication in Physical Review Researc

    Thermodynamics of diamond formation from hydrocarbon mixtures in planets.

    No full text
    Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution
    corecore