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Abstract

The thermodynamic description of molecular systems composed of water (H2O), ammo-
nia (NHj), and methane (CH,4) at high pressure is the subject of the present cumulative
thesis. The focus lies on the calculation of equations of state, phase diagrams, and their
characterization by employing the quantum-statistical method density functional theory
molecular dynamics (DFT-MD).

Complementary to the extensive high-pressure water data existing in literature, we first
investigate the thermodynamic properties of ammonia and methane. The resulting equa-
tions of state are verified by comparing them to experimental Hugoniot curves. From
the simulations of methane, we obtain strong signs of demixing into diamond and hydro-
gen. Moreover, the properties of the binary and ternary mixtures of the three molecules
are investigated. In particular superionic water-ammonia mixtures are proposed for the
first time using evolutionary structure searching. Additionally, the linear mixing approx-
imation for ammonia, methane, and water is validated and the diffusive properties of
different mixtures are discussed. The obtained simulation results serve as input for mod-
eling the interior structure of giant planets. Especially the pressure-temperature range
up to 1 TPa and 20000 K is investigated. These conditions are relevant for Uranus, which
is prototypical for the huge class of ice-rich exoplanets.



Kurze Zusammenfassung

Die thermodynamische Beschreibung komplexer Gemische bestehend aus Wasser (H20),
Ammoniak (NHj3) und Methan (CH,4) unter hohem Druck ist Gegenstand der vorliegen-
den kumulativen Dissertation. Dabei liegt der Fokus auf der Berechnung von Zustands-
gleichungen, Phasendiagrammen und deren Charakterisierung mittels der quantenstatis-
tischen Methode der Dichtefunktionaltheorie-Molekulardynamik (DFT-MD).
Erganzend zu den bereits umfangreich in der Literatur vorhandenen Hochdruck-Wasser-
daten, werden zunachst die thermodynamischen Eigenschaften von Ammoniak und Me-
than untersucht und die resultierenden Zustandsgleichungen mit experimentellen Hu-
goniot-Kurven verifiziert. Dabei ergeben die Simulationen fiir Methan erste starke Hin-
weise auf die seit langem diskutierte Entmischung in Diamant und Wasserstoff. Weiter-
hin werden die Eigenschaften der bindren und ausgesuchter terndrer Mischungen der drei
Molekiile untersucht. Insbesondere finden wir erstmals superionische Wasser-Ammoniak-
Gemische, die mit Hilfe von evolutionary structure searching vorhergesagt werden. Da-
ritber hinaus wird die Naherung der linearen Mischung fiir Ammoniak, Methan und
Wasser validiert und die Diffusionseigenschaften verschiedener Mischungen diskutiert.
Die erhaltenen Simulationsergebnisse dienen als Eingabeparameter fiir die Modellierung
des inneren Aufbaus grofler Planeten. Dabei wurde insbesondere der fir Uranus rele-
vante Druck-Temperatur-Bereich bis 1 TPa und 20000 K untersucht, da dieser Planet
prototypisch fiir die grofle Klasse von eisreichen Exoplaneten ist.
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1. Introduction

In 2014, the spacecraft Rosetta arrived at the comet 67P /Churyumov-Gerasimenko, and
many people witnessed the landing of Philae, the first man-made object to land on a
comet. Since then, Rosetta has collected many valuable data, including the finding of
the simplest amino acid, glycine, accompanied by methylamine and ethylamine in the
coma of the comet [I]. It is organic compounds like these that provide the basis of life
as we know it. Major building blocks of proteins and deoxyribonucleic acid (DNA), the
carrier of genetic information, are amino acids and nitrogenous bases [2]. The rings and
chains, which are assembled to these large biological compounds, are built up by the
elements hydrogen (H), carbon (C), nitrogen (N), and oxygen (O). These elements are
counted among the seven most abundant ones in our Solar System, which is significantly
enriched in heavy elements compared to the composition of the Milky Way [3]. Our Sun
is orbited by four inner rocky planets as well as four outer giant planets accompanied
by several smaller bodies. They comprise hitherto 178 planetary satellites, five dwarf
planets, and numerous asteroids [4]. Many of those objects contain remarkable amounts
of the so-called planetary ices [5} 6], i.e., methane (CH4), ammonia (NHj3), and water
(H20), which are, along with their mixtures, the linchpin of this work.

In everyday life we encounter these molecules in a variety of forms. Water is essential for
all known forms of life and as such makes up between 50% and 75% of the human body;,
depending on the individual [7]. Tt covers 70% of Earth’s surface, with its greatest portion
to be found as liquid in the oceans. Moreover, large amounts of water are stored in polar
ice and in the atmosphere. Water vapour is one of the most important greenhouse gases,
which originates primarily from natural sources. The anthropogenous greenhouse effect
is fueled by carbon dioxide and methane, which are predominantly released from indus-
trial processes and livestock farming [§]. Apart from its presence in Earth’s atmosphere,
methane represents the main component of natural gas, which makes it an important
energy source. The third molecule, ammonia, is utilized as a refrigerant, and is the most
important precursor for fertilizers, which are typically ammonium salts [9].

Chemically, water, ammonia, and methane are isoelectronic molecules and many prop-
erties are determined by the number of lone electron pairs as well as the arrangement
of the atoms within each molecule leading to a slight, however significant, difference in
bond angle. For example, in the methane molecule the four hydrogen atoms are arranged
at the edges of a perfect tetrahedron surrounding the carbon atom with a HCH bond
angle of 109.5°. Hence, all charges are balanced and the resulting methane molecule is
non-polar. The HNH angle amounts to 107.3° and the HOH angle to 104.5° and both
molecules possess unbound electrons. Therefore, water and ammonia have strong dipole
moments of 1.85 D and 1.47 D [10], respectively. This becomes evident as they show
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autoprotolysis:

2H,0 = H;0" + OH™, (1.1)
2NH; = NHy + NH; .

The charge in water as well as ammonia is transported by proton hopping, which is
described as Grotthuss mechanism [11]. Due to this similar behavior, water and ammonia
mix very well. Since the polar nature of the water molecule is very different from methane,
any water-methane mixture is governed by hydrophobic hydration. Much attention has
been drawn to methane clathrate structures, composed of water cages hosting methane
as guest molecules inside [I2HI4]. They are to a great extent stabilized by van-der-Waals
forces. These clathrates are very abundant at the bottom of the oceans as they form
solely under pressure and methane is released as soon as the clathrates are brought to
atmospheric pressures.

As the pressure is increased, new and potentially important effects such as stochiometries
unlike those we are familiar with at ambient conditions can be found [I5HI7]. Research
in this area was boosted when first experiments were designed that were capable of
reaching those high-pressure conditions. Their foundation was layed in the early 20th
century by Bridgman [I8], who designed a giant press, which allowed the compression
of samples up to 10 GPa. With this technique, which he was awarded the Nobel Prize
for in 1946, he pioneered in investigating the high-pressure phase diagram of water [19].
The apperatus worked on the same principles as modern diamond anvil cells (DACs) [20]
and today, pressures up to 1 TPa can be achieved using a double-stage DAC [21]. Laser
heating of DACs allows the study of the warm dense matter regime, which comprises
strongly-correlated matter in the eV range with densities typical for condensed matter.
This corresponds to the conditions suspected in the interior of giant planets. In this
thesis we aim at investigating warm dense H-C-N-O compounds, which are relevant for
planetary modeling, using DF'T-MD simulations.

1.1. Phase diagrams

In this section, the phase diagrams of water, ammonia, and methane are introduced
based on the available data in literature with special emphasis on the thermodynamic
conditions covered by experiments. The number of compounds which can be formed
by mixing these three molecules is tremendous. Therefore, we restrict this discussion
to the phase diagrams of exemplary binary and ternary mixtures of relevance to the
planetary objects considered in this work. The hydrogen concentration in these mixtures
is chosen according to the stoichiometry of water, ammonia, and methane. Discussions
on mixtures with increased hydrogen content such as HyO-Hy and CH4-Hy can be found
elsewhere [22-24].

1.1.1. Water, ammonia, and methane

The phase diagrams of water [25-27], ammonia [28-34], and methane [35H37] are illus-
trated in Fig. [[.1] The shown temperature-pressure conditions range up to 1000 K and
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cover between 10~% GPa and 10> GPa corresponding to the thermodynamic conditions
that can be achieved routinely in laboratory experiments using x-ray diffraction, Raman
scattering and neutron diffraction.

By comparing the phase diagrams, it becomes evident that the melting line as well as
the critical point decrease significantly in temperature with decreasing molecular mass.
Water starts to melt from the hexagonal ice Ih at standard conditions (273.15 K, 1 bar =
10~* GPa). Upon melting, the density increases and reaches a maximum at 277 K [3§],
which is one of the well-characterized anomalies of water. Apart from the liquid and
gaseous phase, the phase diagram shown in Fig. contains a variety of solid phases.
Currently, there are at least 15 known crystalline ice phases [14], three amorphous ice
phases [39] and several high-pressure results from crystal structure prediction [40H43]
discussed in literature. Interestingly, all crystalline phases adjoining the melting line,
i.e., ice Th, III, V, VI and VII, are characterized by disordered hydrogen bonds. At
the same time, the low-temperature ice phases posses ordered hydrogen bonds [14} [44].
Additionally, some ice phases are metastable and can be solely obtained by following
specific experimental pathways. For example, ice IV and XII are produced via isobaric
heating of high-density amorphous (HDA) ice [45].

At even higher pressures and temperatures than considered in this figure, water is pre-
dicted to be present in the superionic phase. This phase is characterized by a lattice
of oxygen ions with mobile hydrogen ions. This exotic state was described in various
studies [46H49]; some of them even discuss multiple superionic water phases [50-52]. A
recent theoretical study predicted a novel superionic-superionic phase transition within
the superionic bee phase [53].

Fig. shows the phase diagram of ammonia as determined by experiments. It contains
five solid phases [32} [54], where I is cubic, while II and III are rotationally disordered
hep and fee phases, respectively. The phases IV and V have an orthorhombic lattice.
Crystal structure prediction studies discuss further lattice symmetries [55H57], especially
with ionic NH; /NH; configurations. This is also supported by experimental data by
Palasyuk et al. [8]. Moreover, a superionic phase (denoted by SI) is shown in Fig. [1.1D]
which has either an fcc or a pseudo-hcp lattice according to the experiments and sim-
ulations by Ninet et al. [33]. Although this experiment finds strong indications of the
superionic phase, it should be noted that there is still no conclusive direct measurement
of the superionic phase, neither for ammonia nor water, up to now. Further stochiome-
tries of other NH compounds at high pressures are dicussed by Goncharov et al. [59].
At standard conditions, methane is found as a colorless gas similar to ammonia. How-
ever, its phase diagram exhibits considerable differences compared to those of water and
ammonia as it does not contain a superionic phase and it is by far less structurally char-
acterized. There are at least nine discussed solid phases for methane [35} [60; [61] at low
temperatures as shown in Fig. including again a rotationally disordered fcc phase,
which is denoted by phase I. The phases III and IV have a tetragonal unit cell, while
phases V and VI exhibit an hep structure. Methane A and B have a more complex struc-
ture and are still heavily debated. Phase A is found above 5.4 GPa at room temperature
and it can be understood as a strongly distorted version of the close packed phase 1. [61],
while phase B remains not completely resolved [37]. HP denotes three high pressure
phases, which possess a cubic unit cell [60} 62].
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Fig. 1.1.: Phase diagrams of water [25-27] (a), ammonia [28-34] (b), and methane [35H37] (c)
based on the available experimental data (see text for details).
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1.1.2. Binary and ternary mixtures

The phase diagrams of the binary mixtures are best characterized for small pressures
ranging up to 10 GPa. For example, the methane clathrates discussed in the introductory
section are known to have three different structures at ambient pressures, whereas there
are several more discussed at higher pressures [I3} [63} [64]. In this section we want
to emphasize the binary water-ammonia mixture, whose high-pressure properties are
studied in this work. Water and ammonia do not form such clathrate structures, since
both molecules are characterized by strong dipole moments. Water-ammonia mixtures
are known to favor one out of three compositions: 1:1 ammonia monohydrate (AMH), 1:2
ammonia dihydrate (ADH), 2:1 ammonia hemihydrate (AHH) [65]. For each composition
various solid phases exist, which have been investigated experimentally [14] as well as by
random structure searching [66} [67]. An exemplary phase diagram is shown in Fig.

320 8,000 - Uranus
ADH Liquid . e e ee adiabat
7,000 0.17Ry
| a
_ 280 < 6,000 Electronic
< AHH-II and ° . o o o 0.52 Ry
> / ice VIl 5 5,000 |
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B ADH-II 1 10 100 1,000
T T T T T T T T Pressure (GPa)
0 1 2 3 4 5 6 7 8 9
Pressure (GPa)
(a) ammonia hydrates (b) synthetic Uranus

Fig. 1.2.: Phase diagrams of ammonia hydrate [65] (a) and a ternary mixture (b), which
consists of water, ammonia as well as isopropanol. The latter is characterized by a H-C-N-O
composition of 28:4:1:7 and is usually referred to as “synthetic Uranus” [68].

which illustrates the dehydration of the observed water-ammonia structures. As the
pressure increases, structures bearing less water are favored ranging from ADH over
AMH to AHH.

To our knowledge, all published phase diagrams for the hydrates of ammonia and methane
are limited to ambient temperatures. Solely for the ternary mixture a phase diagram
exists which covers the warm dense matter region [68]. It is shown in Fig. and was
derived from a joint effort of DF'T-MD simulations and shock compression experiments.
Apart from an ordinary molecular phase and an ionic phase, they find a reticulating
phase characterized by a carbon network as well as a conducting electronic fluid phase.
Furthermore, that study suggests that even the ternary mixture may adopt a superionic
phase.
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1.2. Molecular compounds in our Solar System and
beyond

Every terrestrial neighbor of Earth shows evidence of hosting water, at least for some
time in their history [44]. Today, there is no water left on Mercury [69] and Venus [70],
whereas solid water is still detected at the south pole cap of Mars [71]. Recently, the
NASA missions Dawn and New Horizons, exploring the astroid belt and trans-Neptunian
objects, respectively, reported signs of (sub-)surface water on the dwarf-planets Ceres [72]
and Pluto [73].

The most considerable portion of the planetary ices are supposed to reside in the interior
of the giant planets Jupiter, Saturn, Uranus, and Neptune [5]. The latter two have mean
densities of 1.3 g/cm?® and 1.6 g/cm?® similar to slightly compressed water, indicating they
are mainly composed of planetary ices. Furthermore, their atmospheres are significantly
enriched in carbon (C/H ~ 80x solar) suggesting a large fraction of methane. Indeed,
their bluish color results from methane absorption in their atmospheres. On the other
hand, Jupiter and Saturn are predominatly built up by hydrogen and helium. Hence,
Jupiter and Saturn are often referred to as gas giant planets, while Uranus and Neptune
are classified as ice giant planets.

Moreover, the moons of the giant planets attract a lot of attention, since they contain
water, ammonia, and methane as well and exhibit some remarkable features, e.g., sub-
surface water and water-ammonia oceans [74]. Among them are the Galilean satellites
Europa, Callisto, and Ganymede, which will be investigated by ESA’s future mission
JUICE (JUpiter ICy moon Explorer) [75]. The spacecraft is scheduled to launch in
2022 and one of its goals is to measure the thickness of Europa’s water ocean. More-
over, Titan and Enceladus orbiting Saturn are discussed to host ammonia hydrates and
methane clathrates, which initiated a strong interest in those mixtures for pressures up
to 10 GPa [14; [76].

Beyond our Solar System, a vast number of further planetary systems exist as detected
by, for instance, the Kepler and CoRoT missions. Lots of these objects are believed
to contain water, e.g., GJ 436b, Kepler-22b, Kepler-452b, and GJ 1214b. Those types
of planets are especially sought after, since there might be a connection between water
oceans and habitability of exoplanets [77]. Thereby, two classes are of great interest, i.e.,
Neptune-like and Earth-like planets [78]. In particular the exoplanets are discussed with
respect to the phase diagram of water [79; [80] and their resulting magnetic field proper-
ties [81]. However, for most exoplanets very few properties are measured. Therefore, the
basis for understanding those exoplanets is the modeling of our better constrained Solar
System planets.

1.2.1. Interior structure models of giant planets

Standard planetary interior models are usually constructed from two convective, adia-
batic layers, representing outer and inner mantle, as well as an isothermal planetary core.
In an iterative scheme each layer is varied until all available observational constraints,
such as effective temperature, mean composition, luminosity, and the gravitational mo-
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ments, are reproduced by the model. The evolution from formation of the planet to
present day can be calculated for such a model, where it is required to yield the age of
the Solar System of roughly 4.6 billion years. Details on the procedure of constructing
planetary models can be found in literature along with an overview on the results for the
giant planets [0; [82-84].

In general, Jupiter can be very well described by applying the standard modeling pro-
cedure described above [85]. Furthermore, the planet’s magnetic field as well as the
observed zonal flows can be very well recovered from dynamo simulations [86]. Although
Saturn is very similar to Jupiter, the planet’s interior structure model requires addi-
tional processes such as inhomogeneous evolution due to hydrogen-helium demixing [87]
to yield the observed luminosity [88; 89]. Moreover, dynamo models have difficulties in
explaining the strong dipolarity of Saturn’s magnetic field and its alignment with the
axis of rotation [90].

Uranus and Neptune appear even more puzzling. In Fig. [I.3] a prototypical model for
an ice giant planet is shown to illustrate the general questions raised when Uranus and
Neptune are discussed. While Neptune’s interior structure can be adequately modeled us-

~2000 K,
0.1 Mbar

region?

~10,000 K, ] !
~10 Mbar s anmannnnnd

Fig. 1.3.: Sophisticated interior structure model of a prototypical ice giant planet summarizing
the materials and uncertainties discussed in literature (courtesy of Nettelmann). Besides the
three ordinary layers, a thermal boundary layer in between outer and inner mantle as well as
a carbon layer on top of the core are suggested to be present in Uranus’ interior.

ing the standard approach, the equivalent Uranus model fails to reproduce the planet’s
remarkably low luminosity [91]. Furthermore, their non-axisymmetrical, highly non-
dipolar magnetic fields are strongly debated with respect to the interior structure of the
planets [92H94]. Especially the superionic phases, which are predicted to occur in water
and ammonia [46], are of great interest in this context, since they might result in a stably
stratified layer inside the planetary mantle region. Additionally, the demixing of methane
into hydrogen and diamond [95] is discussed with respect to the size of the planetary
cores, which the models usually find to be very small. Hence, the physical and chemical
properties of matter within this ice layer are of great interest and accurate high-pressure
equations of state are necessary to describe the planetary interiors properly.



1. Introduction

1.2.2. Equations of state (EOS) as input for planetary modeling

The equations of state are a crucial input for planetary models that usually consist of
different materials, whose abundance may even vary with depth. Therefore, the linear
mixing approximation is applied, which assumes that the volume of a mixture at constant
pressure p and temperature 7' is sufficiently described by adding up the volumes of the
individual N, components [96; [97]. The density ¢ and internal energy U of the mixture
are obtained from the following relations [84]:

1 Ne

o(p, T) ; W,ZT) ’ (1.3)

Ulp,T) = gjini@, T) . (1.4)

The mass fraction x; in the above equations is defined as the ratio of the mass of the ith
component, m;, and the total mass M:

m;

i (15)
One is left with the choice of appropriate EOS for the individual materials that cover the
required pressure and temperature conditions, which are illustrated in Fig. for the
solar giant planets [85; 88 [94] and Titan as representative for ice-bearing moons [74].
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Fig. 1.4.: Planetary profiles for the ice-bearing objects Jupiter [85], Saturn [88], Uranus [94],
Neptune [94] and Saturn’s moon Titan [74] along with a representative selection of EOS avail-
able in literature prior to this work. Very extensive analytic/fitted EOS, indicated by colored
frames, exist for water (rose) [98], methane (light green) [99] and ammonia (yellow) [100], while
DFT-MD data were only available for water (rose shaded area) [47] and methane (light green
shaded area) [101].
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For the entire range shown, several equations of state for hydrogen and helium are avail-
able such as the EOS by Saumon, Chabrier, and van Horn [102] as well as the Rostock
EOS (REOS) combining DFT-MD data with chemical models [103]. However, the ex-
isting data are much sparser for the planetary ices. Fig. illustrates the EOS data for
those materials that have been available prior to this work. At pressures below 1 GPa,
equations of state exist for water [98], ammonia [100; [104; [105], and methane [99]. They
are referred to as analytic/fitted EOS, since they were constructed using experimental
data and typically provide a thermodynamic potential.

For high-pressure water a DFT-MD EOS [47] exists, which compares much better to
experiments [106] compared to other available EOS data such as the SESAME table
(7150) [107]. Note, all SESAME EOS are based on a combination of several analytic
methods and experimental data [108]. Combining either of both high-pressure EOS with
the analytic/fitted EOS [98], yields an EOS which covers entirely the conditions pre-
dicted for all solar giant planets. Prior to this work, the available methane DFT-MD
data [I0I] as well as the respective SESAME tables (5500, 5501, and 5502) [108] did
not cover the entire required temperature-pressure range. For ammonia, no EOS at high
pressures existed at all, for instance, the SESAME table (5520) [108] is limited up to
760 K and 1 GPa. For mixtures several low-pressure EOS [109; 110] exist, but there are
almost no high-pressure data [14].

1.3. Aim and outline of this thesis

The present thesis is concerned with the understanding of molecular H-C-N-O compounds
under warm dense matter conditions typical for the interior of giant planets as discussed
in this introductory chapter. The focus will be set onto three main aspects, starting with
the characterization of the phase diagrams of the pure molecular compounds ammonia
and methane. In particular, the superionic phase of ammonia as well as the demixing
of methane into hydrogen and diamond are of great interest here. The second goal is
to answer the question whether superionic mixtures exist, which is studied exemplary
for the 1:1 water-ammonia mixture. Finally, the main goal is to provide reliable EOS as
input for planetary applications. Compositional effects are investigated and the validity
of the linear mixing approximation is checked.

The following chapter 2| introduces the theoretical concept of density functional theory
molecular dynamics (DFT-MD) simulations, which are the methodical foundation of this
thesis. Starting from the quantum many-particle problem, which is tackled by treating
the electrons and atomic nuclei seperately, the basic ideas of DFT and MD are discussed.
Building on this framework, the technical details of the plane-wave code VASP, i.e., the
DFT-MD implementaion used in this work, are presented.

Subsequently, additional computational methods including essential technical details of
data analysis are discussed in chapter[3] In particular, details on the evaluation of the ob-
tained DF'T-MD data are given. This comprises the construction of equations of state and
phase diagrams including the calculation of structural properties such as pair distribu-
tion functions, bonding autocorrelation functions and diffusion coefficients. Furthermore,
crystal structure prediction (CSP) is introduced with special emphasis on evolutionary



1. Introduction

structure searching. In this work we use the code XtalOpt, which is employed at 0 K to
construct decent structures as input for the finite-temperature calculations.

In chapter [] the main results of this work are outlined, which are contained in the publi-
cations in chapter 5} Note, that the discussion of the methane results is extensive, since
these results are not entirely covered in the papers.

In addition, supporting information is given in appendix [A] including a full set of EOS
data for the binary 1:1 mixtures.

10



2. Density functional theory molecular
dynamics (DFT-MD)

The main task in quantum physics and chemistry is to solve the Schrodinger equation,

ih S w({a0n): 1) = HE({ag, o)1) (2.)
describing the time evolution of the N-particle state for any non-relativistic many-particle
system. The state is characterized by the wave function ¥, which is a high-dimensional
object, since it depends on the spin o, and the three dimensional space information qj
of each particle k for all points in time ¢. The reduced Planck constant is represented
by h. As we consider no additional external fields, the Hamiltonian H can be generally
expressed as

ﬁ:Te_l'Tn—i_‘A/;ae_'—‘?en—*—Vnna (22)

where 7., and T}, are the kinetic energy operators for the electrons and nuclei, respectively.
The operators Vee, Ven and Vnn account for the electron-electron, electron-nuclei and
nuclei-nuclei interactions. Given a system’s Hamiltonian H , €q. can be applied to
an isolated atom as well as to complex many-particle systems such as molecules, surfaces
and crystals. Here, we want to investigate a system containing N, atomic nuclei and
N, electrons governed by each particle’s kinetic and interaction enery via the Coulomb
potential:

Ne 42 Nn D2
e p n P
H — 1 a
2 2me + z_: 2M,
=1 a=1 (2 3)
Ne Ne e? No Nn Z o Zpe? Ne Nn 762 '

2.2

a=1b>a 4780’13% - Rb| i=1a=1 47T<“50|f'z' - Ra’ .

i=1 j>i 47T60|f'i — f'j|
In this formulation, each electron, carrying the elementary charge e and mass m., is rep-
resented by the operators for momentum p,; and position ;. In the same way momentum
f’a and position f{a are defined for a nucleus with mass M, and charge number Z,. In
the following all operators will be expressed in position representation. Finally, ¢ is the
vacuum permittivity.

The above equations fully determine the evolution of the many-particle system, but an-
alytic solutions without any approximations are limited to very few cases such as the
hydrogen atom. Moreover, any numerical implementation suffers from the long-range
character of the Coulomb interaction and the high dimensionality of the wave function,
making it impossible to even store this object. Therefore, many flavors of approximations

11



2. Density functional theory molecular dynamics (DFT-MD)

and simulation techniques have been developed throughout the last decades. One par-
ticularly successful and effective simulation method is density functional theory (DFT)
coupled with molecular dynamics (MD) which was suggested by Car and Parrinello [ITT]
for the first time. The DFT-MD approach applied herein, which is similar to the Car-
Parrinello MD, is described in the following.

2.1. Born-Oppenheimer approximation

As a first step to facilitate the many-particle problem, the electronic system is decoupled
from the nuclei via the Born-Oppenheimer approximation [112]. It is based on the as-
sumption that both particle species move on different time scales due to their substantial
mass difference. The light electrons follow instantaneously any displacement of the much
heavier nuclei. Hence, the total wave function of an adiabatic state m can be rewritten
as product of the electronic ®,, and the nuclear wave function y,,:

U({ap, ont;t) = ¥({ri}, {Ra}; ) = xm({Ra}; 1) Pm({Ra}, {ri}) . (2.4)

The spin is neglected in this notation, since this work solely considers spin-degenerate
states. Inserting the above expression into eq. (2.1)) we obtain a reduced stationary
Schrodinger equation for the electrons,

(T + Vee + Ven) @ ({Ra}, {ri}) = En({Ra}) P ({Ra}, {1}) (2.5)

with the eigenvalue F,,, which depends parametrically on the set of nuclear coordinates
{R,}. The entire dynamics of the system is recovered by the atomic nuclei obeying the
relation

X (Ra}it) = [T+ Vo + (R D (Ra}s1) (2:6)
The above equations pave the way to treat the two subsystems seperately, but coupled
via the Born-Oppenheimer energy surface E,,({R,}). In the following the main ideas
for solving eq. via density functional theory (DFT) and the classical analogue of
eq. with molecular dynamics (MD) simulations are given briefly. For further reading
on DFT, the interested reader is referred to review articles [I13HI17] as well as the books
by Kohanoff [118] and Martin [I19]. More details on the numerical concepts of MD can
be found in the books by Frenkel and Smit [120], Marx and Hutter [121], Rapaport [122]
and Tuckerman [123].

2.2. Density functional theory (DFT)

For a long time much attention has been paid to the efficient approximation of the wave
function in eq. maintaining its correct symmetry, such as in Hartree-Fock theory
incorperating Slater determinants [I17]. With growing computational power much more
accurate wave function based methods like Mgller-Plesset perturbation theory, config-
uration interaction and coupled clusters have become available [124]. However, these

12



2.2. Density functional theory (DFT)

approaches are still computationally demanding, so that their applicability is limited.
Opposed to these quantum chemistry methods, there have been major efforts in many-
particle physics to reformulate the problem avoiding the wave function. These methods
comprise the Green’s function techniques, density matrix theory and the by far most
successful density functional theory. The latter method is employed in this work, since it
has proven to be very efficient for material applications, while being sufficiently accurate
at the same time.

The fundamental quantity in DFT is the electron density n(r), which can be expressed
as one-particle distribution function,

n(r) = Ne/--~/d3r2 o By, |0 ()2 (2.7)

normalized to the number of electrons V,:
/d37" n(r) =N, . (2.8)

Replacing the high-dimensional wave function ®,,({r;}) by the three-dimensional elec-
tron density containing solely the necessary information reduces the numerical effort
substantially. Its basic idea has already been present in the treatment of the homoge-
nous electron gas proposed by Thomas, Fermi and Dirac [125H127]. The foundation of
DFT in today’s formulation was laid by Hohenberg and Kohn [128], who introduced the
following two-part theorem for the ground state [128§]:

1. The external potential V., is (except for a constant) a unique functional of the
electron density n(r). Since, in turn, V., determines the Hamiltonian, H, = T, +
Vee + Ven, the many-particle ground state is a unique functional of n(r).

2. The Hohenberg-Kohn functional, Jyk[n(r)] = T, [n(r)]+E.[n2(r)], yields the ground
state energy, if and only if the electron density n(r) is the true electron density n(r).

The above Hohenberg-Kohn theorem shows mathematically the feasibility of the electron
density approach [128]. In the next section the Kohn-Sham formalism is discussed, which
makes it possible to apply this method.

2.2.1. Kohn-Sham formalism for finite temperatures

Originally, DFT was developed as a ground state theory, but shortly after Hohenberg
and Kohn had published their idea, Mermin developed an extension to finite tempera-
tures [129]. As a consequence, the quantity that has to be minimized is the free energy,

Fln(r)] = Enln(r)] = TS[n(r)] , (2.9)

rather than the previously discussed ground state energy E,,[n(r)]. In this expression
S[n(r)] represents the entropy, while T is the electronic temperature, which is equal to
the ionic temperature throughout this work.

The main idea of the Kohn-Sham formalism is to rewrite eq. by using a reference

13



2. Density functional theory molecular dynamics (DFT-MD)

system of non-interacting electrons [130]. Denoting the reference system by index R, its
kinetic energy is written as

Trln(r)] = -

Zj i f; / &rey (1) V26, (x) (2.10)

2 € =1

and the entropy of the non-interacting reference system has the analytic form

oo

Sln(r)] = —kp > _[filn(fi) + (1 = fi) In(1 = f;)] . (2.11)

i=1
In this formulation f; indicates the fractional occupation number, which can be expressed

via the Fermi-Dirac distribution:

1
elei—pe)/kpT 4 1 °

fi=fle) = (2.12)
In this equation kp represents the Boltzmann constant, . is the chemical potential and
g; describes the eigen energy of the respective Kohn-Sham orbitals ¢;(r). These one-
particle orbitals are the elements of the Slater determinant, which is used to describe the
total wave function of the non-interacting reference system [I18]. Using the reference
system, the free energy is expressed as

Fln(r)] = Trln(r)] + Eg[n(r)] + Een[n(r)] = TSg[n(r)] + Fuc[n(r)] . (2.13)

This free energy formulation solely contains exactly known terms, except for the exchange-
correlation term [129; [130],

Freln(r)] = Te[n(r)] = Ta[n(r)] + Eee[n(r)] — En[n(r)]

— TS[n(r)] + TSg[n(r)], (2.14)

which encapsulates all unknown quantities [I30]. For example, the difference E.. — Ey
describes the electron-electron interaction beyond the well-known Hartree energy term,

Euln(r)] = - / / d%d%’W. (2.15)

T 24meg r—r/|

Furthermore, the external energy can be calculated in the following way:

Eo[n(r)] = — gzjl f;zo / d&3r & . (2.16)

All of the above equations enter a self-consistent cycle consisting of the three following
Kohn-Sham equations [118; [130] encompassing the electron density,

n(r) = ifi’@'(r)’Q ; (2.17)

14



2.2. Density functional theory (DFT)

the effective potential,

e? 5, n() X Zer 1 )
_ _ F,, , 9.18
ey () dreg /d " r — 1| az::l dmeg |r — Ry * on(r’) In(r)) (2.18)

and finally, the effective one-particle Schrodinger equation

2
[— 2h A+ vepp(r) | di(r) = €i¢4(r) . (2.19)
Me

This formalism is not entirely free from wave functions, since the Kohn-Sham orbitals are
essential for the described self-consistent treatment. An alternative approach is provided
by orbital-free DFT, which is very successfully applied for very high temperatures [131}-
133]. However, it is not (yet) practicable in the warm dense matter regime investigated
in this work.

2.2.2. Approximations for the exchange-correlation functional

In principle, DFT is exact and the only task left is to find an expression for the exchange-
correlation functional F.[n(r)]. It turns out that this is by no means trivial, since one
heavily relies on approximations, which have a direct impact on the quality of the simula-
tion results. Therefore, the exchange-correlation functional should be chosen with great
care depending on the studied system.

Generally, there is a broad range of existing approximations with different levels of accu-
racy. They form a hierarchy that is often represented by the rungs of a ladder [134]. The
lowest tier is the local density approximation (LDA), which describes the inhomogenous
electron gas locally as homogenous [130]. This treatment is usually applied to systems
with locally weakly varying electron density. This class also provides the only feasi-
ble finite-temperature functionals to date [I35]. More sophisticated finite-temperature
exchange-correlation functionals are lacking in literature and therefore, the common, very
profound approximation is made that the free energy functional is sufficiently described
by the ground state energy functional E,.[n(r)] [I18].

Besides the electron density itself, generalized gradient approximation functionals take
into account the gradient of the electron density:

ESGA(r)] = / & n(r)eCAn(r), Vin(r)] . (2.20)
In this work, we use the exchange-correlation functional proposed by Perdew, Burke and
Ernzerhof (PBE) [I36], which is a good compromise between accuracy and computational
cost. This functional gives better lattice constants [137], binding energies and thermody-
namic properties such as the enthalpy [138] compared to LDA. However, PBE is known to
yield too small band gaps due to the self-interaction error [I18], which usually is corrected
for by using hybrid functionals such as the HSE [139]. These functionals are computa-
tionally very demanding. Hence, their employment is limited to physical properties such
as electronic transport properties [140], which are not part of this work. Additionally,
PBE does not include non-local van-der-Waals forces, which are in a growing number of
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2. Density functional theory molecular dynamics (DFT-MD)

functionals included nowadays [I41}; 142]. However, all of those van-der-Waals function-
als are empirical to a certain extent. Therefore, our calculations are entirely performed
using the PBE functional, which is free of empirical parameters and was constructed to
fulfill as many physical constraints as possible. Moreover, if desired, it is possible to
correct EOS data for any functional induced error in a post-processing scheme [143].

2.3. Molecular dynamics (MD)

The framework outlined in the previous section allows the computation of the electronic
properties for a given static configuration of the nuclei. The dynamics of the total system
are fully mapped onto the nuclei, which are treated via classical molecular dynamics. The
particles are arranged in a simulation box of volume V', which is periodically repeated
in all directions to minimize surface effects. This simulation method was introduced by
Alder and Wainwright [144} [145] and provides direct access to the particle trajectories,
which are described by Newton’s equations of motion [I18; [146],

MaRa - _vaEnn({Ra}) _VaEm({Ra}) _MaRai - Fa({Ra}) ) (2'21)

Fa,nn Fa,en Fa,bath

representing the classical analogue of eq. for a canonical ensemble.

In the above equation, the total force F,({R,}) comprises three parts. F, ,, is the force
resulting from the Coulomb interaction between the nuclei, while the force F, .,, originates
from the interaction of the nuclei with the electrons. Due to the coupling with a heat
bath to realize the canonical ensemble, there is an additional force for the ion motion,
F.patn. Here, the heat bath is described by using the Nosé thermostat [146; 147]. In
this formalism, an additional dynamic quantity s = s(¢) is introduced, resulting in the
Hamilton function of the heat bath [146]:

1 5\ 2
Hoan = 5Q (2) +3(Na = DhsTns (2.22)
S

with the Boltzmann constant kg. The additionally introduced degree of freedom s sat-
isfies the following equation of motion [146]:

N ' -2
Qs=s> MR —3(N, — 1)ksTs + Q% . (2.23)
a=1

From this expression, the force Fy pos, is determined, entering eq. ([2.21)).
The introduced heat bath periodically adds or extracts energy to/from the system main-
taining the time-averaged kinetic energy of the nuclei [147]

(T,) = ;)(Nn C)ksT . (2.24)

This enables us to choose the temperature as an independent simulation parameter along
with the number of particles N,, and the volume V' of the simulation cell. The energy
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2.4. DFT-MD simulations with VASP

coupling is controlled via the characteristic frequency of the thermostat,

\/ 6(N, — 1)kgT
wr = )

Q
which is determined by the frictional mass parameter @ [146} [147].
The forces Fy ., and Fyp, in eq. (2.21) are obtained directly from the molecular dy-
namics, in contrast to F,,. This term is derived from the DFT calculation as gradient
of the Born-Oppenheimer energy surface E,,({R,}) using the Hellmann-Feynman the-
orem [I48; [149]. Thereby, it is sufficient to write the energy instead of the free energy,
since the entropy term cancels out [146} 150} T51].
Nowadays up to trillions of particles are generally feasible in a MD simulation utilizing
massive parallel computers, e.g., a recent study reported a simulation with 4.125-10%2
particles [I52]. Nevertheless, in a typical classical MD simulation up to 10° particles are
handled, while the addition of the quantum treatment of the electrons discussed here
reduces the number of feasible particles even further to 100 - 1000.

(2.25)

2.4. DFT-MD simulations with VASP

Throughout this work, the DFT-MD implementation in the Vienna Ab initio Simulation
Package (VASP) [153H156] is employed to describe the considered H-C-N-O systems in
the warm dense matter regime. The workflow of this code is illustrated in Fig. [2.1} For

MD-step

lon molecular \
start mp! positions  — dmamice pp-thermodynamics

¢ yes

e-density
in?
n(l’) = F min?
exchange-
Veff correlation F[n(r)]
functional

Kohn-Sham .
equation »| ci ®i

DFT-step

Fig. 2.1.: Schematic workflow of a DFT-MD simulation as implemented in the VASP code [156].
The illustration is taken from the Ph.D. thesis of Lorenzen [I57].

a given starting configuation of the nuclei, the electron density is initially guessed and
the free energy is calculated from the effective one-particle Schrodinger equation derived
by Kohn and Sham as outlined in the previous section. This is repeated until the free
energy reaches its minimum, so that the derived Hellmann-Feynman forces can enter
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2. Density functional theory molecular dynamics (DFT-MD)

the N, Newtonian equations of motion eq. for the atomic nuclei. Finally, the
thermodynamic properties are calculated at the time step and the nuclei positions are
updated by integrating the Newtonian equations via a Verlet algorithm [146]. In the
following, we present the most important technical details, the reader may be referred
to the Ph.D. thesis by Kietzmann [I58] for additional information.

First of all, VASP is working in real and momentum space to optimize efficiency as the
potential energy has a diagonal representation in real space while the kinetic energy is of
diagonal form in reciprocal space. The Brillouin zone is sampled using special k points.
Throughout this work, the Baldereschi Mean Value Point [I59] has been used extensively.
In some cases more than one k point was needed to ensure convergence. Thereby, the
scheme by Monkhorst and Pack has been applied [160].

Moreover, there exist two different major methodologies for the expansion of the basis
set in modern DFT codes. One can either use local orbital basis sets as implemented in
SIESTA [161] and FHI-aims [I62] or employ a plane-wave basis set. The latter is used
by VASP, as well as by Quantum Espresso [163], Abinit [164] and CASTEP [165]. The
expansion of the Kohn-Sham orbitals is expressed by Bloch functions [118]:

6i(r) = Giu(r) = fv i (1) = fv 3 G (G (2.26)

where wuy, is the Bloch factor for a given k point and band index p. The summation in
the above equation is aborted as soon as the wave number G results in a kinetic energy
that exceeds the pre-defined energy cutoff,

h2

Me

Eeuw > 3 k+GJ*. (2.27)

Rewriting the Kohn-Sham equation with the plane-wave formalism, the following form
is obtained for the reciprocal space [118]:

>

G/ me

2

k + G*0q.qr + e (G — G)| Ciu(G') = €1, Cieu(G) . (2.28)

Additionally, VASP uses projector-augmented wave (PAW) pseudopotentials [I66], so
that it is possible to treat only relevant electrons, e.g., valence electrons, explicitly in
the simulation. At the same time, the core electrons are embedded in the core potential,
allowing us to cut off any oscillation of the wave function close to the core. Due to the
frozen core electrons, we will often use the term ion instead of nucleus in the following.
Finally, it should be noted that prior to generating the actual calculation results present
in this thesis, extensive convergence tests with respect to particle number, k point sets,
energy cutoff, used pseudopotential, timestep and simulation duration have been per-
formed. Additionally, the results have been checked against experimental data and other
simulation results whenever it was possible.
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3. Computational methods and
simulation details

After outlining the general method for treating the many-particle problem and its im-
plementation in VASP in the previous chapter, we present the most important details
on the data analysis as well as some further computational tools.

3.1. Equations of state (EOS) and Hugoniot curve

The thermal p(p,T') and caloric U(p,T') equations of state are constructed from a series
of DFT-MD simulations carried out for various densities and temperatures. For each
simulation the pressure p and internal energy U are calculated after equilibration of the
system by evaluating the following expressions:

p= =20 )+ () (3.1)
U= 2NnkBT +(By) + (Fln(r)] + TSr[n(x)]) . (3.2)

The first term in both equations refers to the ideal contribution of the ions, the second
term is their interaction contribution, while the last term describes the total contribution
from the electronic system. The expression for U is directly obtained by combining
eq. (2.21) and eq. (2.13)). For the pressure, the interaction part for the ions is calculated
via the virial theorem [122; [167], while the total pressure for the electronic system is
derived from the analogeous quantum mechanical virial theorem [I19; 168} 169]. The
brackets () indicate a time average.

Note that from here on we will use the intensive quantity specific internal energy u,
which is defined as internal energy divided by the total system’s mass. Due to the
classical treatment of the ions via the Newtonian equations of motion, we are not able to
capture the zero-point motion energy. Therefore, a quantum correction term (uq.(o,7"))
based on the quasi-harmonic approximation is added to the DFT result u(p,7T) in a
post-processing scheme, yielding the corrected specific internal energy

u (0, T) = u(o,T) + uge(o,T) . (3.3)

The correction term is obtained by performing a spectrum-weighted frequency integration
that adds the quantum statistical energy of a harmonic oscillator and subtracts the
respective classical energy for each frequency interval dv [170]:

3Nn 0 1 1
o, 1) = = [ av 80T [ (5 + =) — kel

m

(3.4)
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Fig. 3.1.: Quantum correction of the caloric EOS ug. (a) and exemplary vibrational spectrum
(b) of methane. The dashed lines in figure (b) are experimentally determined vibrational
frequencies, where the color indicates non-degenerate (red), two-fold (green) and three-fold
degenerate (orange) vibrations of the CH4 molecule.

The vibrational sprectrum S(v, o, T') can be calculated using either experimentally deter-
mined vibrational frequencies or by computing it directly from the DFT-MD data eval-
uating the velocity autocorrelation function (V,(t) - V,(0)). Both approaches have been
successfully applied to water [I71] and ammonia [I72]. The complementary quantum
corretion of methane is plotted in Fig. along with an exemplary vibrational spectrum
at 111.5 K and 0.423 g/cm?. The calculated methane spectrum is in good agreement
with the experimental vibrational frequencies, similar to our findings for ammonia [172].
Interestingly, the quantum correction has a very pronounced kink for temperatures up
to 3000 K, which coincides with a change in the diffusive properties as will be discussed
in section 1.2} Furthermore, it should be noted that there exists at least one alternative
approach to account for the quantum correction of the caloric EOS, which yields similar
results [173].

The EOS obtained from the DFT-MD calculations can be verified by comparison to
experimental data, which are usually either obtained from static DAC experiments or
dynamic compression experiments. Typical states that are easily accessible by dynamic
compression experiments are described with the Hugoniot curve [174]:

1 1 1
Up — Uy = 5(}71 —|—p0) (QO — m) . (35)

The above equation relates specific internal energy, pressure, and density of the initially
prepared state, indicated by index 0, with the state present after the material has been
shocked, which is indicated by index 1. The Hugoniot curve has been studied several
times for water, ammonia, methane and the so-called synthetic Uranus mixture by gas
gun experiments [68; [I75HI7Y]. In case of water exist many further experimental Hugo-
niot data [106} 180-183].
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3.2. Structural and transport properties

3.2. Structural and transport properties

Changes in slope of the thermal and caloric EOS as well as prominent features in the
resulting Hugoniot curve may indicate phase transitions, which are most commonly ac-
companied by structural rearrangements of the electrons and ions. In this work, the
resulting structural properties in the form of pair distribution functions and bonding
autocorrelation functions are analyzed for each studied phase. Along with the diffusion
coefficients and mean square displacements, this analysis is the basis to construct the
phase diagrams for the considered H-C-N-O systems.

3.2.1. Pair distribution functions

The pair distribution function is a measure for the probability to find a particle of species
a at a distance r from a particle of species S. This quantity can be generally expressed
as two-particle distribution function, which is reduced to the following form utilizing its
radial symmetry [167]:

No Np

900) = 0050) = T = <ZZ<5 > (36)

=1 7=1

In this notation N, and Ng describe the number of particles for the respective species,
while the distance between two particles ¢ and j is denoted by r;;. In the presence of
only one particle type, i.e. @ = (3, the additional constraint 7 > i needs to be considered
in the summation. Moreover, 0,4 is the Kronecker delta, whereas §(r — ;) represents
the Dirac delta function.

The pair distribution function is a real space quantity, which is normalized to the volume
V. Tt is indirectly accessible by scattering experiments, since it can be obtained as fourier
transform of the structure factor, which is probed in k space. However, to our knowledge
there are no studies of the high-pressure H-C-N-O compounds considered in this work.

3.2.2. Bonding autocorrelation functions (BACF)

Pair distribution functions provide useful indications of properties such as dissociation
degree of a given molecular system. While the DFT-MD simulations are built upon
the physical picture describing interacting electrons and atomic nuclei, we are interested
in characterizing our H-C-N-O systems in terms of chemical bonding. Therefore, we
introduce the bonding autocorrelation function (BACF) [68; [184],

_ (B1)BO))
0= By

For an existing bond, the binary object B(t) equals one, whereas it is set to zero when
the bond does not exist. The brackets indicate an ensemble average and the function
is normalized to one for the starting point at ¢ = 0. The cutoff what to call a bond is
somewhat arbitrary, here we choose the first minimum of the pair distribution function
as criterion. The lifetime of the bond is then determined by a fitting procedure described
n [184].

(3.7)
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3.2.3. Diffusion coefficients and mean square displacements

Diffusion coefficients describe the mobility of particles according to their thermal en-
ergy, which is referred to as Brownian motion. In an isotropic system the self-diffusion
coefficient D, of particle species v can be calculated via the Green-Kubo formula [167]

1 ot N
D, = Eg& i drg<va(7)-va(0)> , (3.8)

using again the velocity autocorrelation function. This method yields slightly better
results with typical errors of about 10% compared to a formally equivalent formulation
using the mean square displacements,

Na

(AR.)%) = > ([Ra(t) — Ra(0)) - (3.9)

a=1

However, the mean square displacements itself proved to be very insightful in determin-
ing, whether a crystal lattice is stable throughout a simulation. Therefore, this quantity
has been used to detect solid phases along with the pair distribution functions [172} [185].

3.3. Crystal Structure Prediction (CSP)

For most of our simulations in the warm dense matter regime, it is sufficient to start the
simulation from a cubic lattice such as fcc or bee. However, for the superionic phase of
the mixture, we realized that the system is not correctly described using a cubic crystal
structure for the ions. This became evident in our analysis of the structural proper-
ties, discussed in the previous section, as well as in the EOS data, which are shown in
Fig.

In this section we briefly summarize the basic idea and different approaches of crys-
tal structure prediction. This is a fast-growing research area, accelerated by increasing
computational power and the availability of diffraction experiments with DACs reaching
routinely the Mbar pressure range [20]. Therefore, it is suggested to study the recent
review articles by Wang and Ma [I86] as well as Zurek and Grochala [I87] for a more
detailed overview and numerical details.

The aim of every crystal structure prediction method is the same: finding the global
minimum of the multi-dimension potential-energy surface (PES) in an efficient way. The
special difficulty here lies in the fact that there are many local minima and ensuring that
the global minimum has been found is challenging.

There exist different approaches, which can be divided into two general classes, biased
and unbiased searches [I86]. Biased structure searches exploit databases of known struc-
tures, which makes the crystal prediction very efficient. However, these methods are
not capable of generating truly new structures. The most successful unbiased methods
comprise random sampling as implemented in AIRSS [I88], genetic and evolutionary
algorithms, which are the heart of XtalOpt [I89] and USPEX [190] as well as particle
swarm optimization algorithms used in CALYPSO [191]. Moreover, there are several
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other methods, which are designed to overcome energy barriers including simulated an-
nealing, basin hopping, minima hopping, and metadynamics [I86]. Nevertheless, those
approaches are partially biased as they rely on initially guessed input structures.

In the following the basics of the evolutionary structure searching code XtalOpt, used
in this work, are introduced. Subsequently, it is outlined how the equations of state
are obtained for the predicted 0 K crystal structures in order to identify the favored
thermodynamic phases.

3.3.1. Evolutionary structure search with XtalOpt

In this work we use the evolutionary approach implemented in the open source code
XtalOpt [I89], which is built into Avogadro [192]. It contains a wrapper for various DFT
codes including VASP, which we use here, and has been applied successfully to water by
another group prior to this work [42].

Crystal structure prediction based on evolutionary algorithms such as XtalOpt [189]
can be understood as an analogue to the biological principles its name is derived from.
Each considered candidate structure of a single iteration of the code is referred to as
an individual of a generation. The enthalpy is computed for each individual within
one generation and can be optimized by a customary chosen iterative scheme. In our
CSP runs, we performed three VASP runs for every considered structure. In a first run
the enthalpy was calculated for fixed atomic positions and fixed lattice vectors, then
the atoms were allowed to move in a second run and finally in a third run, the atomic
positions as well as the lattices vectors were allowed to change. Other schemes involving
two or four optimization steps were tested, however the threefold scheme yielded the best
results.

A new generation is obtained by modifying the individuals of the current generation
via procreation. Thereby, a new structure (offspring) can be formed from either one or
two parent structures. If solely one parent is involved this process is called mutation
opposed to the process involving two parents, which is referred to as breeding. Both
procreation types are illustrated in Fig. [3.2] XtalOpt provides six different operators to
construct new offsprings [I89]. Breeding is performed via the crossover operation, which
cuts two parents and assembles them to a new offspring. There are five operators left
for the mutation. In Fig. the permutation is shown exemplary, which exchanges the
positions of two arbitrary atoms of the parent structure.

XtalOpt allows to choose the amount for mutation and breeding to be included in the
searching process. Further input parameters are the starting pool size and the number of
structures taken from one generation to the next. Also the volume, lengths of axis vectors,
and angles between them can be set. Furthermore, structures can be seeded throughout
the searching process to accelerate the procedure, however, this might bias the CSP.
Duplicate structures are identified throughout the XtalOpt run and are systematically
removed [193].

Due to the variety of input parameters, it is challenging to ensure convergence of the
XtalOpt run. Typically, we ran at least five generations with a pool size of 50 structures.
We performed several XtalOpt runs for different system sizes up to 16 molecules in the
box and varied the input parameters outlined above.
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Fig. 3.2.: Illustration of the basic idea of evolutionary structure prediction taken from Zurek
and Grochala [I87]. Figure (a) shows the evolution of two inital structures (green and red
circles) on the potential energy surface (PES). The initial structures and their modifications,
which result in the orange circles on the PES, are illustrated in figure (b).

3.3.2. Quasi-harmonic approximation employing Phonopy

The crystal structure prediction is usually carried out at selected pressures. From these
results, cold curves (T = 0 K) are determined using static VASP simulations to cover the
entire desired pressure range. Since these calculations do not include any dynamics, our
post-processing scheme to obtain the quantum-correction presented in section [3.1] is not
applicable. Therefore, we perform additional phonon calculations with Phonopy [194]
to compute the zero-point motion energy, which is added to the thermodynamic prop-
erties obtained with VASP. Evaluating the respective results within the quasi-harmonic
approximation [195; [196] leads to the equations of state for the solid phases with the
predicted crystal structures and allows us to calculate phase transitions between them.

In order to obtain the free energy of the phonons, the potential describing the interaction
between the nuclei is expanded in a Taylor series centered at the equilibrium positions
of the nuclei {R?}:

Vin((Ra}) = V(RO + -V ol s OV oy (3a0)
nn a nn a - 3Ra79 =) a 5 o aRaﬁaRb’)\ ) aLh .. .
=0 AB,A

a,b

for finite displacements x¥ with § = 1,2, 3. Within the quasi-harmonic approximation the
above expansion of the potential higher-order terms than quadratic term are neglected.
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3.3. Crystal Structure Prediction (CSP)

For each displacement an equation of motion can be formulated,

Mt = - >~ Aljay (3.11)
b#a,\

where AZ:;\ is the matrix containing the force constants of the atomic nuclei. The dis-
placements are expanded into a plane-wave basis

~0
0 Lo  —iwgt
T, = —m=e . (3.12)
a /Ma
The above expression is inserted into eq. (3.11)), which leads to an eigenvalue equation
with the eigenvalues (w,)? [196]. The resulting phonon frequencies w, are inserted into

the following formula for the specific free energy [197]

1) =3 Bhw + kT in(l — o 57)] (3.13)

K

The obtained specific free energy contains no explicit dependence on the volume. There-
fore, the computation of the phonons has to be carried out for several points along the
coldcurve, so that f(7,v) can be constructed. From this expression the specific entropy
of the phonons,

Sph = — (%@ﬂv , (3.14)

as well as the specific internal energy of the phonons, w,, = fpn +1'Sph, are derived. The
pressure is given by

0
=0 . 3.15
p=0 g f+ fon) (3.15)
The specific Gibbs free energy can be calculated in the following way:
g, T) =u+up, —Ts —Tspn +pv, (3.16)

where T's is the specific entropic contribution of the electrons and v is the total system
volume divided by its total mass. The phase boundaries between the different considered
solids, identified from the crystal structure prediction, are obtained by comparing the
specific Gibbs free energies. The solid structure with the minimal specific Gibbs free
energy is the thermodynamic stable phase.
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4. QOutline of the obtained results

Ammonia, methane, as well as binary and ternary mixtures including water have been
investigated by employing the computational tools described in the previous two chap-
ters. Most of the results outlined in the present chapter have already appeared in peer-
reviewed journals. The corresponding publications are referred to as papers 1 [172],
IT [185], IIT [184], and IV [198] and can be found in chapter [5 along with one additional
manuscript, paper V [199], which is in preparation.

Note that pure water is disregarded here, since its thermodynamic high-pressure prop-
erties have been subject to numerous experimental and theoretical studies. The reader
may be referred to the Ph.D. thesis by French [27] and the references therein.

4.1. Ammonia

In a pioneering study Cavazzoni et al. [46] investigated the high-pressure phase diagrams
of water and ammonia on a coarse grid using Car-Parrinello molecular dynamics. They
predicted great similarities of those two materials including a novel phase, which is the
superionic phase. This phase is characterized by a large proton conductivity due to
highly mobile hydrogen ions diffusing through a lattice of nitrogen and oxygen ions, re-
spectively. These findings motivated us to start our initial investigation of molecular
compounds with the thermodynamic and structural properties of ammonia, which are
compiled in paper T [I72].

One of the two main results for NHj is the phase diagram, which is shown in Fig. [4.1] Tt
has been calculated up to 330 GPa and comprises four different phases as well as a tran-
sient region dominated by the diatomic molecules Ny and Hy. At comparatively small
pressures and temperatures up to 1000 K a rotationally disordered phase is predicted,
which is characterized by an fcc lattice formed by freely rotating NHs molecules. As
the pressure is increased, this solid phase transitions into a superionic phase, allowing
the hydrogen atoms to become mobile as the NH bonds break. Upon heating the solid
phase on the other hand, we find an ordinary molecular fluid, which starts to dissociate
gradually above 3000 K. The corresponding pair distribution functions exhibit strong
signs of diatomic nitrogen and hydrogen molecules at 4000 K and 5000 K, which in turn
dissociate as temperature and pressure rise. Details on the characterization of the in-
dividual phases including structure analysis and diffusion coefficients can be found in
paper I [172].

Our phase diagram agrees qualitatively well with that of Cavazzoni et al. [46], although
the comparison is a little challenging due to different definitions of the phases. For exam-
ple, they predict a metallic fluid due to band gap closure at 300 GPa and 5500 K, whereas
we find the band gap to close already at 3000 K induced by thermal effects, which would
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Fig. 4.1.: High-pressure phase diagram of ammonia determined via DFT-MD simulations in
this work [172]. Each symbol in this plot represents an equilibrated simulation run. The
isentropes of Uranus and Neptune are taken from Redmer et al. [94] and contain solely water
as representative for planetary ices.

result in an electronically conducting fluid. On the other hand the predicted regions of
the superionic phase agree very well, despite the different underlying nitrogen lattices.
Cavazzoni et al. [46] predict an hep lattice, while our simulations assume an fec lattice.
Our ammonia phase diagram has furthermore been compared to static diamond anvil
cell experiments obtained by two different groups [33} 200]. The experimental data along
with some accompanying simulations performed by Ninet et al. [33] strongly indicate a
superionic phase above 700 K and 57 GPa, while Ojwang et al. [200] probed a similar
region, but found no evidence of a superionic phase. Our calculations are in accordance
with the conclusions drawn by Ninet et al. [33] and suggest that the data by Ojwang et
al. [200] might need to be reinterpreted.

Our second major result for ammonia consists of the EOS, which has been computed
for the entire pressure-temperature conditions inside Uranus and Neptune for the first
time. Paper I [I72] contains the EOS up to 330 GPa and 10000 K in tabulated form
including the zero-point motion energy correction for the internal energy introduced in
section Recently, we extended the EOS up to 1000 GPa and 20000 K in order to
cover the thermodynamic range relevant for adiabatic Uranus and Neptune models as
well as a new class of Uranus models. Those contain a thermal boundary layer resulting
into a significantly hotter planetary interior compared to previous models [19§].

Prior to this work, there solely existed low-pressure EOS data up to 1 GPa for NHj3 in
literature as discussed in section [[.2.2] Therefore, we are restricted to comparing the
Hugoniot curve, which is calculated from our EOS using eq. , to available shock
compression data [I75; [I78; [179]. The Hugoniot curves calculated from our simulation
data applying different approaches for the zero-point motion energy are generally in good
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agreement with those experiments. However, none of our calculated Hugoniot curves re-
produces the two temperature points determined by Radousky et al. [I78]. Albeit it
should be noted that including the quantum correction leads to a remarkable improve-
ment in that regard. Li et al. [201] published a Hugoniot curve from DFT simulations
that agrees slightly better with the experimentally determined temperatures, though
they used significantly weaker convergence criteria compared to our work. Hence, the
temperature along the Hugoniot curve remains a matter of investigation.

4.2. Methane

The icy deep interior of Neptune-like giant planets is believed to contain significant
amounts of methane in addition to water and ammonia. Under the pressure-temperature
conditions in giant planets CHy molecules are suspected to decompose, and perhaps even
to demix into diamond and hydrogen. In that scenario the heavier diamond might sink
down to the core, while the light hydrogen ions would stay in the mantle [82; 202] as
illustrated in Fig. in section [I.3] This effect, which is also intensively debated for
more complex hydrocarbons, has been subject to various experimental [95}; 203H206] and
theoretical studies [207-209].

Our investigations on methane are pursued in close collaboration with Hamel and Qi
from the Lawrence Livermore National Laboratory, who have performed initial DFT-
MD simulations up to 7000 K to calculate the EOS. On this data basis the preliminary
phase diagram shown in Fig. has been computed under the lead of Hamel. In par-
ticular, the entropy has been calculated via coupling-constant integration [211] using
force-matching [212; 213] to construct effective potentials from the DFET-MD calcula-
tions. The results discussed in the following are not published yet, but some of them are
planned to appear in paper V [I99] contained in section [5.5]

This methane phase diagram contains new predictions for the lower and upper bounds
of the melting line as well for the phase boundaries of demixing and the dissociation
of CHy. We find that the demixing line appears as a natural extension of the melting
line toward higher pressures. While the demixing line is nearly independent of temper-
ature, the melting line decreases strongly with temperature. Both lines appear to meet
in the proximity of the dissociation region, which we find to decrease with temperature
toward higher pressures. However, this is a preliminary picture. The calculations by
Gao et al. [208] and the DAC experiments by Hirai et al. [95] suggest a more complex
behavior. Gao et al. [208] combined structure prediction calculations at 0 K with the
quasi-harmonic approximation to determine the most stable crystal structures. Thereby,
they found molecular methane to be stable only below 100 GPa. A further increase
of pressure leads to a progressive decomposion of CH, into higher-order hydrocarbons
coexisting with solid hydrogen. According to their study diamond does not form until a
pressure of 300 GPa is reached and the phase seperated hydrogen atoms adopt a liquid
state. A similar behavior has been found in the experiments by Hirai et al. [95]. In
future work the process of polymerization along with demixing needs to be studied in
more detail.

Moreover, our predicted melting region has a slightly steeper slope than found experi-
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Fig. 4.2.: Preliminary high-pressure phase diagram of methane with special emphasis on the
demixing region (courtesy of Hamel). The red lines indicate our predictions for the demixing
region, the dissociation and the melting region of methane based on the intial EOS up to
7000 K calculated by Hamel and Qi. The black lines show the solid phases predicted by Gao
et al. [208], the CH4 melting line determined by Hirai et al. [95] and relevant hydrogen phase
boundaries taken from Chen et al. [210]. The blue lines indicate the isentropes of the respective
giant planets [85; 88} 91].

mentally [95; 206] and its location is shifted by 1000 K upwards compared to Hirai et
al. [95]. This deviation is believed to be partially caused by our assumption of a bcc
lattice as well as the uncertainties in the melting temperature determination in the ex-
periment and our simulations.

In this work, the EOS initially calculated by Hamel and Qi has been revisited and sub-
stantially extended to cover the pressure-temperature range relevant for all published
Uranus models. The resulting thermal and the caloric equation of state of methane is
shown up to 1.5 TPa and 20000 K in Fig. 4.3 The significant change in slope, character-
izing the thermal as well as the caloric EOS, results from the dissociation process. Both
plots also contain the EOS calculated by Sherman et al. [I0I], which overall agrees with
our results within 2% in pressure except for some points in the melting region. There we
find a deviation of up to 4% due to a slightly different prediction for the location of the
melting region, which proved to be very sensitive to the simulation path due to chemical
reactions. For the difference in internal energy between both EOS; we find values up to
1.0 kJ/g, which again can be traced back to the hysteresis effects found. Also, Sherman
et al. [101] used a lower particle number as well as a lower energy cutoff compared to
our simulations, so that the deviations might partially result from the different choice of
simulation parameters.

The quality of the obtained EOS has been checked by comparison to the Hugoniot curve
measured in gas gun experiments [I78; 214]. The computed Hugoniot curves are shown
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Fig. 4.3.: This work’s EOS of methane (solid lines with circles) along isochores in comparison
to the EOS data by Sherman et al. [I01] (triangles). Moreover, (a) shows the computed Hu-
goniot curve with (dashed black line) and without quantum correction (dotted black line) in
comparison to the experimental results by Radousky et al. [I78] (black diamonds).

with and without quantum correction of the internal energy in Fig.[4.3] As for ammonia,
we underestimate the temperature for a given pressure in comparison to the data by
Radousky et al. [178)] indicating a systematic deviation between theory and experiment.
Additionally, the diffusion coefficients for carbon and hydrogen have been calculated for
the entire pressure-temperature range of the EOS. The results are plotted along isotherms
in Fig. 4.4 Note that diffusion coefficients for solids are not contained in this plot, since
atoms are tightly bound in a crystal lattice and possess typically very small diffusion
coefficients, which lie beyond the resolution of our simulations.

In general, the diffusion coefficients of both species increase with temperature and de-
crease with pressure as has been found before for ammonia [I72] and water [27]. However,
there are some prominent features resulting most likely from phase transitions. Below
4000 K we find the diffusion coefficients to vanish in certain pressure ranges. The diffu-
sion coefficients of hydrogen and carbon behave similarly at 3000 K. However, we find
finite hydrogen diffusion coefficients for 1000 K and 2000 K at low pressures as well as at
pressure above 800 GPa and 400 GPa, respectively. This behavior results from the un-
derlying thermodynamic phases. For those temperatures, we find a molecular fluid at low
pressures, which transitions into a solid as the pressure is increased. This is indicated by
the vanishing diffusion coefficients of both H and C. For the highest considered pressures
we find strong indications of demixing and formation of a carbon network with diffusive
hydrogen ions at 1000 K and 2000 K. At 3000 K polymers are starting to form, which
is indicated by the small diffusion coefficients of carbon as well as additional analysis of
the pair distribution functions. Further studies of these phases are crucial for a profound
understanding of the demixing in methane. For example, one should investigate different
starting lattices of the simulations, since the chosen box symmetry as well as the particle
number limit the direct demixing process in the box. So far, our calculated diffusion
coefficients support our preliminary CH,4 phase diagram.
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Fig. 4.4.: Diffusion coefficients of hydrogen (upper panel) and carbon (lower panel) over pres-
sure along different isotherms between 1000 K and 20000 K.

4.3. Binary mixtures

The outlined results for ammonia and methane in conjunction with the thermodynamic
data on water available in literature [47; [52] provide the basis for a systematic investi-
gation of their binary and ternary mixtures. In this section the results on binary 1:1
mixtures are outlined, which are contained in paper II [I85] and paper V [199]. Our first
mixture study has been devoted to the water-ammonia mixture addressing the question
whether there exist superionic mixtures. The consequent results have been published in
Paper II [185].

To date, there is no generally accepted experimental proof of the existence of superionic
phases at planetary conditions, although strong indications have been found for water [49)]
and ammonia [33]. The resolution of the underlying lattice of the heavy ions proved to
be very challenging in those experiments making it necessary to use accompanying simu-
lations to analyze the measured data. Commonly, cubic crystal structures are proposed
for the underlying superionic lattice of water [50-52] and ammonia [33}; [I72]. Thereby,
the fcc lattice has been discussed for HoO as well as NH3. Hence, an fcc lattice was
chosen as starting structure in our simulations to investigate the phase diagram. These
calculations yielded indeed hints for a superionic phase, but the underlying N-O lattice
proved to be amorphous. This problem could be resolved by applying crystal structure
prediction carried out with XtalOpt [I89]. In appendix , a comparison between the
EOS based on the fcc structure and the one based on the structures from crystal struc-
ture prediction (CSP) is shown, see Fig. [A.1]

CSP had been shown to be successful for pure water [40; 41}, [43] and ammonia [55H57].
First simulations of water-ammonia mixtures at low pressures seemed promising and
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Fig. 4.5.: Phase diagram of the 1:1 water-ammonia mixture calculated in this work [I85]. Each
symbol represents a DFT-MD simulation. The region with the violet diamonds indicates the
superionic 1:1 water-ammonia mixture, while superionic water [47] is illustrated in pink and
superionic ammonia is yellow [172].

predicted a solid with space group P4/nmm to be favorable up to 12 GPa [66; [67]. This
result was confirmed, and 3 further solid phases with space groups Ima2, Pma2, and Pm
were found up to 800 GPa. The respective cold curves including the zero-point motion
energy were computed from phonon calculations employing Phonopy [194]. Heating up
our predicted solid phases revealed superionic behavior between 1000 K and 6000 K. The
resulting superionic water-ammonia phase covers roughly the same pressure-temperature
range as the intersection of superionic water [47; 52] and superionic ammonia [172] as
can be seen in Fig. 4.5l Furthermore, the diffusion coefficients have been calculated for
this mixture, indicating that the diffusion coefficients of the individual species are well
described by the respective values predicted for water [27] and ammonia [I72].

Apart from the 1:1 water-ammonia phase diagram, we also studied the validity of the
linear mixing approximation for the binary 1:1 EOS up to 20000 K and 1 TPa. The
results are prepared for publication and are contained in the paper V in section 5.5, The
thermal and caloric EOS for the three 1:1 mixtures of water, ammonia, and methane
have been calculated and are shown in appendix [A] The resulting data were interpo-
lated using Akima splines for the pressure and linearly interpolated with respect to the
temperature. The density and specific internal energy of the linear mixture have been
calculated according to eq. and eq. . The resulting deviations are shown in
Fig. Overall, we find the linear mixing model to agree very well with the real binary
mixture data for the density, whereas we find moderate deviations for the internal ener-
gies. The largest density deviation of up to 4% was found for the water-methane mixture,
while the specific internal energy deviates for some pressure-temperature conditions up
to 4 kJ /g throughout all considered binary mixtures. Interestingly, the strongest internal
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energy deviations can be related to the pressure-temperature conditions at which super-
ionic phases are predicted to occur. In case of the water-ammonia mixtures, we find a
positive energy deviation for the conditions typical for superionic ammonia [I72], while
the deviation turns out to be slightly negative for superionic water [47]. In case of the
other two binary mixtures, the superionic phases of ammonia and water induce again the
biggest deviation between the energies of the linear and the real mixture. However, the
observed indications of the demixing of methane might contribute as well below 4000 K.
For the density deviations the picture is less clear. The maxima and minima in Ap can
not be directly related to specific phases; they might even result from our interpolation
using Akima splines. These third order polynoms can lead to an oscillatory behavior,
when the underlying data are sparse and/or posses significant statistical fluctuations.
This is supported by the fact that our data basis for water-ammonia is significantly
larger compared to the other two mixtures, which show the strongest oscillations. Fur-
ther interpolation and fitting procedures need to be investigated. However, we regard
the discussed density deviation of up to 4% as upper limit.
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Fig. 4.6.: Deviations in density Ap (upper panels) and specific internal energy Au (lower
panels) of the real binary 1:1 mixtures from the linear mixing approximation [199]. Additionally,
three prototypical profiles of Uranus, referred to as icy (solid line) [199], water-only (dashed
line) [94], and thermal boundary layer (TBL, dotted line) [198], are shown in each plot. Details
on the Uranus models are given in section
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4.4. Ternary mixtures

In this section we outline the results of the compositional effects for the ternary mixtures
contained in paper III [I84] as well as the verification of the linear mixing approximation
for a chosen composition along three planetary profiles, contained in paper V. Prior to
this work, only very sparse data existed on ternary mixtures composed of water, ammo-
nia, and methane at high pressures. Most work on ternary mixtures at high pressures
has been carried out for the so-called synthetic Uranus, which is characterized by a com-
position of 28:4:1:7 H-C-N-O. Thereby, isopropanol has been used as a replacement for
methane [68} T77H179).

In order to identify general compositional trends in the EOS as well as the bonding
behavior, we systematically studied six different ternary mixtures in collaboration with
groups at the National Laboratories in Los Alamos and Livermore. The results are pub-
lished in paper III [I84] contained in section [5.3|

The compositions 1:1:1, 1:1:2, 1:1:3, 1:2:1, 1:3:1, 2:1:4 of methane-ammonia-water mix-
tures were chosen. Performing heating and cooling simulations, each mixture was started
from arbitrary atomic positions at a representative density of 3 g/cm?. Within the in-
vestigated temperature range between 2000 K and 10000 K, we find complex molecular
structures, which are characterized by analyzing the bonding autocorrelation functions.
At temperatures up to 4000 K we find amorphous structures composed of nitrogen and
oxygen, while carbon forms short polymers. At the same time, the hydrogen ions form
short-lived bonds and are very mobile compared to the heavy ions. Above 4000 K we
find a dissociated fluid. This behavior does not depend on the composition of the mix-
ture. However, we noticed that the oxygen content of the system has the most significant
effect on the thermal EOS. As the oxygen content is increased, the pressure drops. The
systematic variation of carbon and nitrogen at constant oxygen content influences the
pressure only very little.

Among the considered concentrations the 2:1:4 methane-ammonia-water mixture reflects
the solar abundances of C:N:O of 4:1:7 best, while being computationally feasible at the
same time. Therefore this mixture was chosen for our further investigations along Uranus
profiles, which are shown in Fig. . This work is part of paper V [199] in section .
The considered three Uranus profiles are the same as in the previous section [4.3] For
massive simulations containing 48 water, 24 methane, and 12 ammonia molecules, we cal-
culated the EOS, structural properties and the diffusion coefficients along these pressure-
temperature paths. In Fig. [1.7] we compare the linear mixing approximation and the
considered real ternary mixture. We find a similar result as for the binary mixtures
outlined in the previous section. The densities of the linear mixing approximation agree
better than 3% with that of the real mixture, while we find stronger deviations for the
specific internal energy of up to -3 kJ/g. This internal energy deviation most likely re-
sults from the chemical bonding, which differs in the ternary mixture severely from the
pure compounds. For example, we find strong CN bonds with lifetimes of roughly 120 fs
at the conditions, which show the biggest deviations along the icy and water profiles.
Additionally, we find the diffusion coefficients in the mixture to behave very similarly to
those found in water [27], ammonia [I72], and methane [199].
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Fig. 4.7.: Density (a) and the specific internal energy (b) of the 2:1:4 methane-ammonia-water
mixture for three possible radial Uranus interior profiles [94; 198} [199]. The real mixture (lines)
is compared to the results obtained from the linear mixing approximation (filled circles) [199].
The presented numbers indicate the maximum deviation found for each planetary profile.

4.5. Implications for the interior structure of Uranus

Prior to this work, conventional interior structure models of Uranus contained water
as the sole proxy for planetary ices [91; 94; 215], except for few conceptional stud-
ies [216; 217], which used simple analytic equations of state to include ammonia and
methane. This work provides, for the first time, DFT-MD EOS for ammonia and
methane, which cover the entire inner mantle region of Uranus for all state-of-the-art
models. This allows the construction of interior models that are more realistic concern-
ing the planet’s composition, which is assumed to agree with the solar abundances of
the planetary ices. First models based on these new data sets have been calculated by
Nettelmann and are contained in paper IV [198] and paper V [199], see section [5.4] and
5.5 Two exemplary models are shown in Fig [4.8l The icy interior structure model,
contained in paper V, is the coldest published model with a core temperature of only
4300 K. It contains an inner mantle, which is almost entirely made of water, ammonia,
and methane. Most of the water in this layer is present in the superionic phase [94], while
the bulk of ammonia and methane are dissociated according to our findings outlined in
sections [L.1] and [£.2] This model shows that it is indeed possible to find a solution, that
allows for a very ice-rich interior. Nevertheless, this model is not able to reproduce the
observed low present-day luminosity. On the other hand the model referred to as TBL,
published in paper IV, is non-adiabatic and contains a thermal boundary layer resulting
in a temperature jump from 2200 K to 6900 K between inner and outer mantle. This
model is the hottest considered interior structure model and has a core temperature of
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1 bar, 76 K

14000 K

Fig. 4.8.: Uranus’ interior structure models containing DFT-MD EOS for water, ammonia,
and methane. The icy model, which is the coldest model investigated in this work, is shown on
the left [199]. The hottest model, which contains a thermal boundary layer (TBL) is illustrated
on the right [I98]. The radial direction represents Uranus’ internal radial distance from the
center, while the angle scales with mass abundance of the individual components. Each color
represents a different compound, whereas its variation in brightness reflects the underlying
thermodynamic phase of the compound.

14000 K. Therefore, all planetary ices contained in the inner mantle are predicted to
be present in the dissociated phase. Note, that the TBL is chosen such that the model
matches the observed present-day luminosity. However, it contains a great amount of
rocks inside the inner mantle in order to match the gravitational moments and the mis-
cibility behavior of rocks with ice is unknown.

The consequent pressure-temperature profiles of the above interior strcture models are
shown alongside a widely-accepted Uranus adiabat without ammonia and methane [94] in
Fig. [1.9] Note that the icy and the water isentrope rely on the same model assumptions
except for the EOS. This illustrates directly the effect of the addition of ammonia and
methane, which results in cooler planetary profiles for the ice-rich models. Such a model
contains less hydrogen and helium in the inner mantle of Uranus compared to a water-
only model. Since H,O, NHj;, and CH, posses a higher heat capacity per mass than H
and He, the entropy is increased, which has to be compensated by a lower temperature.
Furthermore, Fig. 4.9|shows the superionic phases for water [47; 52] and ammonia [I72] as
well as the demixing region of methane discussed in section According to our calcula-
tions there is no demixing of methane inside Uranus. Likewise, pure superionic ammonia
is improbable to occur inside Uranus. However, our results for the mixtures indicate
that there might exist superionic water-ammonia mixtures. There are also indications
of carbon clustering in our simulations of water-methane and the ternary mixtures that
might result from demixing of carbon in those mixtures, possibly at conditions relevant
for Uranus’ interior.

Moreover, the linear mixing approximation has been verified for the planetary ices based
on the consistent DFT-MD EOS database as outlined in sections [£.3] and 1.4l Our find-
ings suggest that the linear mixing approximation is sufficient for mixtures of ices under
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Fig. 4.9.: Uranus’ profiles of interior structure models for three limiting cases. The dark blue
line indicates a typical adiabatic model containing water as single representative of molecular
compounds [94]. The light blue lines show the most recent models including besides HoO also
NH; and CHy, which are illustrated in Fig. [4.8] Additionally, the demixing region of methane
(green) as well as the superionic phases of water (orange) and ammonia (yellow) are presented
in the graph.

planetary conditions, since the resulting EOS deviates only within the typically antici-
pated accuracy of the interior structure models. This complements the findings of other
groups employing DFT-MD to verify the linear mixing approximation for hydrogen-
helium mixtures [218] and the hydrogen-helium mixtures including heavier elements in
the dilute limit [219].

Another promising result is our observed agreement of the self-diffusion coefficients in the
real mixtures compared to the pure compounds as long as the underlying phases are not
too different. Therefore, we conclude that the existing database on diffusion coefficients
for water along with the calculated values for ammonia and methane in this work can be
used as input for dynamo models.

4.6. Summary and outlook

In this work the thermodynamic, structural, and transport properties of complex H-C-N-O
compounds at high pressures have been investigated using density functional theory
molecular dynamics simulations. Thereby, pressures up to 1 TPa and temperatures up
to 20000 K have been considered to cover the conditions predicted for the ice giant plan-
ets in the Solar System. Uranus and Neptune are prototypical for the supposedly large
class of extrasolar ice-rich planets, since they are believed to contain vast amounts of
water, ammonia, and methane. Hence, an accurate knowledge of the equations of state,
phase diagrams, and transport properties of those materials as well as their mixtures is
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required to understand the internal structure of ice giant planets. Here, the focus has
been directed toward the EOS and phase diagrams of the pure compounds ammonia and
methane, the properties of the binary and ternary mixtures and the verification of the
linear mixing approximation.

Initially, we have investigated the characteristics of pure ammonia [I72], proposing a
new phase diagram, which includes a superionic phase. This phase is composed of an
fce lattice of nitrogen ions with highly mobile hydrogen ions. Moreover, for the first
time an ammonia equation of state has been calculated in the warm dense matter regime
including a quantum correction for the caloric EOS.

Additionally, a novel methane equation of state has been calculated, which agrees well
with experimental Hugoniot data. Diffusion coefficients and radial distribution functions
have been calculated to characterize the thermodynamic phases. Moreover, we propose
a preliminary phase diagram including a demixing region, in collaboration with Hamel
and Qi from the Lawrence Livermore National Laboratory.

On this foundation, we characterized the properties of the binary and ternary mixtures.
Employing evolutionary crystal structure prediction, we propose a superionic phase in
the 1:1 water-ammonia mixture [I85]. Moreover, we investigated various concentrations
for the ternary molecular mixture with special emphasis on the bonding and structural
properties in collaboration with the National Laboratories in Los Alamos and Livermore.
This investigation revealed that the EOS is strongly dependent on the oxygen content.
Moreover, we could not identify a superionic phase in any ternary mixture, although we
found an amorphous lattice with highly mobile hydrogen ions. It might be insightful to
carry out further structure searching calculations for a selected set of water-ammonia-
methane mixtures.

For the first time, DFT-MD equations of state for water, ammonia, and methane in the
warm dense matter regime are available, enabling planetary models to go beyond the
approximation of water as only representative of ices. Based on this new set of EOS,
we investigated new possible interior structure models for Uranus [198; [199]. For several
planetary profiles as well as for all three binary mixtures, the linear mixing approxima-
tion has been verified. Furthermore, the diffusion coefficients have been calculated for
the binary and ternary mixtures and have been compared to those of the pure compo-
nents. We conclude, that it should be possible to develop approximate rules for diffusion
coefficients for arbitrary H-C-N-O mixtures.

Future work will be directed to an extensive investigation of transport and material prop-
erties. In particular, the isothermal compressibility, viscosity, and electronic transport
properties, such as the electronic conductivity, should be computed. This would pro-
vide an extensive data set, which could be applied to interior structure models as well
as dynamo simulations of ice giant planets [81; [92; 94]. A similar data set exists for
the hydrogen-helium mixture [140], that is already successfully applied to simulations
of Jupiter’s dynamo [86; 220]. Additionally, a systematic study will hopefully enable us
to develop mixing rules for transport properties in the warm dense matter region. The
superionic phases should be treated with special caution regarding the viscosity.
Moreover, the demixing of methane and water-methane mixtures needs to be further
investigated. In order to do so the entropy needs to be calculated, which can be done
either by applying a two-phase model [221] or coupling constant integration [211], which
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requires force matching [212; 213]. Details of computing the demixing region of planetary
ices with DF'T-MD are a matter of present investigation.

Finally, wide-range EOS for water, ammonia, and methane including the entropy need to
be constructed to describe the entire evolution and present structure of ice giant planets
in and beyond the Solar System. Similar EOS for hydrogen and helium for application to
gas giant planets like Jupiter and Brown Dwarfs [103] already exist and have experienced
broad interest in the community. Such improved wide-range data sets could provide the
basis of more sophisticated planetary models, which would lead to a better understanding
of the formation, interior structure, and evolution of giant planets.
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5. Publications

This chapter comprises four peer-reviewed publications [172} 1845 [185; 198] and one ad-
ditional manuscript, which is in preparation for submission to The Astrophysical Jour-
nal [199]. The latter work is presented directly in this chapter, while the other four papers
are available electronically at the journals” websites using the provided DOI information.
Additionally, the contributions of the individual authors are listed for every manuscript.
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M. French
Preparation of the manuscript, initial idea for the quantum-correction of the EOS, pro-
vided tools to analyze the data

R. Redmer
Supervision of the project, preparation of the manuscript
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ABSTRACT

We investigate the validity of the widely used linear mixing (LM) approximation for the EOS of
ices by computing 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary
mixture at pressure-temperature conditions typical for the interior of the ice giant planets Uranus
and Neptune. For that purpose we perform density functional theory molecular dynamics simulations
using the VASP code. In particular, the LM approximation for equations of state is verified for the
conditions present inside Uranus ranging up to 10 Mbar. We also calculate the diffusion coefficients
for the ternary mixture along different Uranus interior profiles and compare them to the values of
the pure compounds. We find that departures of the LM approximation from the real mixture are
generally small; for the EOS they fall within about 4% uncertainty while for the diffusion coefficients
within 20% uncertainty. In addition, we present a new ab initio EOS for methane. The ice EOS
are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is
consistent with the gravity field data, in which case the planet becomes rather cold (Tore ~ 4500 K).

Subject headings: Uranus; Neptune; Planetary Interiors; Planetary Evolution; Molecular Mixtures,

Warm Dense Matter

1. INTRODUCTION

The interior of the giant planets Uranus and Neptune
are believed to be rich in water, ammonia and methane.
Many observable properties of this planet, such as lu-
minosity, gravitational moments and magnetic field, are
thought to be determined by the physical and chemical
properties of their icy layer. Hence, the phase diagrams,
equations of state and structural properties of these ma-
terials and their respective mixtures are of great interest.
Over the last decades much effort has been put into the
development of accurate equation of state data relevant
for the interiors of the giant planets, formost for hydro-
gen, helium, and water. Since the pinoneering work of
DeMarcus (DeMarcus 1958) and Peebles (Peebles 1964)
models for giant planets employ the EOS data for differ-
ent materials by mixing them linearly using the additive
volume rule, i.e. by additing the volumina of the different
materials at same pressure and temperature.

For hydrogen and helium, the validity of the linear mix-
ing (LM) approximation has been tested in various stud-
ies. This was started by looking at analytic plasma mod-
els (Stevenson 1975) and later extended to DFT stud-
ies (Vorberger et al. 2007). (Wang et al. 2013) also
investigated other mixing rules for the H-He mixture.
Recently, (Soubiran & Militzer 2016) tested the LM ap-
proximation for the addition of heavy elements to a H-He
mixture typical for Jupiter in the dilute limit.

There are two effects that might cause strong deviations
of the linear mixing model from the behavior of the real
mixture, demixing and phase transitions. For H-He for

1 Universitit Rostock, Institut fiir Physik, D-18501 Rostock,
Germany

2 Theoretical Division, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545, USA

3 Lawrence Livermore National Laboratory, Livermore, Cali-
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4 Department of Astronomy and Astrophysics, University of
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instance, Vorberger et al. (2006) suggest that the LM
approximatin does not work well in the region of H-
He phase separation. Methane and other hydrocarbons
are thought to demix under the conditions present in
Uranus(Hirai et al. 2009; Gao et al. 2010; Spanu et al.
2011; Lobanov et al. 2013). Water and ammonia are
predicted to adopt different phases along the adiabats
of Uranus and Neptune; in particular, water and am-
monia possess a first-order transition to a superionic
phase (Cavazzoni et al. 1999; Goncharov et al. 2005;
Ninet et al. 2012) and even transitions within that phase
(Wilson et al. 2013; French et al. 2016). One can thus
suspect strong deviations between real and linear mixing
behavior, at least in certain regions of the P-T space.
However, for the ices the EOS data are sparse, and the
validity of the LM approximation for molecular com-
pounds has never been systematically checked. It is the
purpose of this study to provide such a systematic study
for the EOS as well as for the diffusion coefficients.
Using the method ab initio simulations, several real
mixtures have already be investigated, such as the 1:1
water-ammonia mixture (Bethkenhagen et al. 2015),
H/H20 (Soubiran & Militzer 2015), H-He with heavy
element enrichment (Soubiran & Militzer 2016), and H-
C-N-O mixture (Chau et al. 2011). There also exist a few
experiments data for mixtures, most of them based on
are shock compression experiments (EOS and electrical
conductivity) (Radousky et al. 1990; Nellis et al. 1997)
but theur pressure range is limited to about 2 Mbar.

To select our P-T range of interest we chose several
different Uranus models: a typical water-rich Uranus
model (Redmer et al. 2011) which is consistent with its
observed gravity field but not with the low luminosity,
and has a central temperature Te,.. ~ 6000 K, then a
rather warm (Tore ~ 14,000 K) proposed Uranus model
that was designed to fulfill both these constraints (Net-
telmann et al. 2016); in addition, we construct a new
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model, which is rather cold (Teore ~ 4500 K), asking if
the interior could be H-He free if made of a mixture of
ices as found earlier (Podolak & Reynolds 1987).

This work is organized as follows. The computaional
method to calculate all the equations of state presented
here is described in section 2. Section 3 presents our
results for the linear mixing approximation for 3 binary
mixtures and 1 ternary mixture, while section 4 deals
with structural and ionic transport properties. In sec-
tion 5 we will introduce a new ice-rich Uranus model,
which serves as a lower bound in temperature compared
to previous discussed models. Finally, our results are
summarized in section 6.

2. EQUATIONS OF STATE (EOS) DATA

2.1. Density-Functional Theory Molecular Dynamics
Simulations (DFT-MD)

The equation of state data were obtained from DFT-

MD simulations performed with the Vienna Ab Initio
Simulation Package (VASP) (Kresse & Hafner 1993a,b;
Kresse & Furthmiiller 1996; Hafner 2008). This approach
is based on the Born-Oppenheimer approximation, which
seperates the electrons from the ions. The electrons are
described via density functional theory (DFT) for finite
temperatures (Hohenberg & Kohn 1964; Kohn & Sham
1965; Mermin 1965; Weinert & Davenport 1992; Wentz-
covitch et al. 1992), while the ions are propagated as clas-
sical particles within the framework of molecular dynam-
ics (MD). The ion temperature is controlled with a Nosé
thermostat Nosé (1984). The interaction between elec-
trons and ions is described by projector augmented wave
(PAW) pseudopotentials (Blochl 1994; Kresse & Joubert
1999). If not stated otherwise in the following section,
a cutoff enregy of 1000 eV, the hard pseudopotentials
and a timestep of 0.25 fs was chosen. The simulation
duration is typically 10 ps to 20 ps after the system was
equilibrated. Furthermore, the Baldereschi Mean value
point was used.
In the following we discuss the available EOS data in lit-
erature along with our calculations. The goal has been
the calculation of EOS data on a grid covering tempera-
tures up to 20000 K and pressures up to 1 TPa.

2.2. Pure ices: water, methane and ammonia
2.2.1. Water

The water data are based on the tabular EOS taken
from (French et al. 2009), where the bulk of the simula-
tions was carried out with 54 molecules, an energy cutoff
of 900 eV and the Gamma point. For very small den-
sities below 1 g/cm? the particle number was reduced
to 16 molecules. This data set was extended by adding
some additional points from (French & Redmer 2015;
French et al. 2016). These data contain the EOS of the
ice phases VII and X as well as the superionic phases
with a bce and fce lattice, respectively.

2.2.2. Ammonia

The ammonia data are taken from (Bethkenhagen
et al. 2013) up to 10000 K and 330 GPa and have been
extended up to 20000 K and 10 Mbar using 32 molecules.
It is important to note that we switched the pseudopoten-
tial as the PAW radius is a lot smaller for the hard pseu-
dopotentials. The data from (Bethkenhagen et al. 2013)
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were not explicitly corrected for the new pseudopoten-
tial, since test calculations showed that both potentials
agreed to better than 1% and 0.5 kJ /g up to 10000 K and
330 GPa. This uncertainty is considered to be within the
anticipated errors of planetary interior structure models.
Moreover, we reduced the timestep from 0.5 fs to 0.25 fs,
since the the dissociated fluid, which is formed at high
temperature, is characterized by short-lived bonds. They
are only be correctly described as the timestep is suffi-
ciently small.

2.2.3. Methane

The methane EOS has been completely recalculated,
since the previously published EOS by (Sherman et al.
2012) does not cover the entire region required for our in-
vestigation. We simulated 54 molecules in the simulation
box, which were placed initially on a bcc lattice for every
simulation run. The resulting thermal EOS is shown in
Fig. 1 along with the data published by (Sherman et al.
2012). Our data typically agree within 2% in pressure
and within 1 kJ/g in specific internal energy compared
to the data by (Sherman et al. 2012). However, in the
melting as well as the dissociation region, we find more
significant deviations of up to 4%, which results from
a hysteresis effect. Performing heating and cooling cal-
culations in both region, we find different moleculars to
form. In particular, we find polymers in some region of
the considered pressure-temperature conditions. These
effects awill be discussed seperately by (Qi et al. 2015).
That work will also present a novel phase diagram of
methane including a prediction of the demixing region.
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FiG. 1.— Pressure over temperature of methane along isochors
(colored lines with circles) in comparison to the thermal EOS
by (Sherman et al. 2012) (colored triangles).

2.3. Binary miztures

The equations of state for the binary 1:1 mixtures,
water-methane and ammonia-methane, have been en-
tirely calculated in this work. However, the 1:1 water-
ammonia data are based on (Bethkenhagen et al. 2015)
and are extended toward higher temperatures as well as
lower densities. That EOS has been calculated using 32
molecules and the Monkhorst-Pack 2x2x2 set, whereas
the other two mixtures have been calculated with 54 mol-
cules on an initial bee lattice. The simulations for the
binary mixtures have been carried out on the same tem-
perature grid as already existed for the pure compounds
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(1000 K — 8000 K: 1000 K steps, 10000 K — 16000 K:
2000 K steps, 20000 K). Each isotherm contains at least
five density points.

In Fig. 2, exemplary isotherms for each binary mixture
as well as the pure compounds are shown at 2000 K.
As aspected the binary mixtures behave very systematic
compared to water, ammonia, and methane. For the
shown isotherms of ammonia and the 1:1 water-methane
mixture, the pressure agrees to within 6%. This suggests,
that one can possibly neglect one of those EOS.

2.4. 2:1:4 methane-ammonia-water mixture

Prior to this work an extensive study has been per-
formed on different concentrations for this mixtures in
order to gain an insight on the properties of those mix-
tures (Meyer et al. 2015). We chose the 2:1:4 mixture
for this study, since it provides a good compromise be-
tween computational effort and resemblence to the the
solar abundances 4:1:7 of water, methane and ammonia.
We simulated mixture containing 48 water, 24 methane
and 12 ammonia molecules along the three planetary
profiles discussed in this work. For the small pressures
up to 40 GPa the reciprocal space was sampled at the
Baldereschi Mean value point, while for higher pressures
the Monkhorst-Pack 2x2x2 set was used. Each simula-
tion run was started from a density resembling that of the
linear mixing approximation. After about 1000 timesteps
the pressure was checked and the volume of the simula-
tion box adapted until the desired pressure was matched
up to a deviation of 2% from the planetary profile’s value.
Since this procedure is very computaionally expensive
for the smallest desired pressures, we typically chose two
different volumes and interpolated linearly between the
resulting pressures.

3. LINEAR MIXING APPROXIMATION

The linear mixing approximation is very simple and
reads as follows for density ¢ and internal energy u (De-
Marcus 1958; Peebles 1964):

1 Yox;
op.T) ; oi(p,T) " W
N

Uranus and Linear mixing of ices 3

In the above equation, X; represents the mass fraction,
which is defined as mass of particle type i devided by the
total mass.

The EOS described in the previous section are interpo-
lated using Akima splines for the pressures and are lin-
early interpolated on a temperature grid. The deviations
in density Ap(p,T) and internal energy Au(p,T) are de-
fined as

Aulp, T) =urp(p, T) — Upear(p, T') - (4)

3.1. Binary Mixtures

For the comparison of the real binary mixtures to the
linear mixing approximation, all data were interpolated
onto a rectangular pressure-temperature grid. The re-
sults for the comparison of real mixture to the linear
mixing approximation are shown in Fig. 3. The plan-
etary profiles shown in this figure are chosen such to
represent the range of currently available Uranus pro-
files. The details of the underlying models are explained
in section 5. The pressure deviation amounts solely be-
tween -3% and 4%. The specific internal energy of the
real mixtures deviates between -3 kJ/g and 4 kJ/g. Note,
that the reference point of all binary mixtures was cho-
sen at 1000 GPa 20000 K, where the internal energy was
set to zero. Interestingly, the strongest internal energy
deviations can be related to the pressure-temperature
conditions at which superionic phases are predicted to
occur. In case of the water-ammonia mixtures, we find
a positive energy deviation for the conditions typical for
superionic ammonia Bethkenhagen et al. (2013), while
the deviation turns out to be slightly negative for supe-
rionic water French et al. (2009). In case of the other
two binary mixture, the superionic phases of ammonia
and water induce again the biggest deviation between
the energies of the linear and the real mixture. A signal,
which might be due to the demixing of methane can not
be clearly identified, however, it might be masked by the
effect of the superionic phases of water and ammonia.
For the density deviations the picture is less clear. The
maxima and minima in Ap can not be directly related
to specific phases, on the contrary they might even re-
sult from our interpolation using Akima splines. These
third order polynoms can lead to an oscillatory behav-
ior, when the underlying data are sparse and/or posses
significant statistical fluctuations. This is supported by
the fact that our data basis for water-ammonia is signifi-
cantly larger compared to the other two mixtures, which
show the biggest oscillations. Therefore, we regard the
discussed density deviation of up to 4% as upper limit
and further interpolation and fitting procedures need to
be investigated.

3.2. Ternary Mixture

The results for the ternary 2:1:4 mixture along the
three considered planetary profiles are shwon in Fig. 4.
We find a similar result as for the binary mixtures out-
lined in the previous section. The maximum deviations
amount up to 2.5% along the TBL planetary profile and
-3.3 kJ /g for the water isentrope. Note that the refer-
ence point of the ternary mixture was differently chosen
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F1a. 3.— Deviation of densities (upper panels) and internal energies (lower panels) of the considered real binary 1:1 mixtures from the
linear mixing approximation. The HoO-NH3 (left), HoO-CH4 (middle), and NH3-CHy (right). All values are within a magnitude of 5%.
For reference, the isentrope assuming pure water (Nettelmann et al. 2013) as well as the one from this work are shown in orange.

to 14000 K and 560 GPa, the end point of the TBL plan-
etary profile. The internal energy deviation most likely
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F1G. 4.— Deviations of density (upper panel) and specific inter-

nal energy (lower panel) between the real 2:1:4 methane-ammonia-
water mixture (solid lines) and the linear mixing model (circles)
along the three discussed planetary profiles of Uranus. the maxi-
mum deviations along each planetary profile are given as colored
numbers.

results from the chemical bonding, which is subject to
the next section.

4. STRUCTURE AND DIFFUSION COEFFICIENTS

In this section we characterize the nature of bonding
found in the binary and ternary mixtures. We consider
only ionic properties, electronic properties are left out
for future work.
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4.1. Pair distribution functions and chemical bonds

Given that the linear mixing approximation works
within 4% in pressure and 4 kJ/g in specific internal en-
ergy, the system must not distinguish too much between
the heavy atoms. However, if chemistry between, for ex-
ample, C and N begins to occur in the simulation then
we would start to see deviations from LM. The largest
deviations in Fig. 4 occur around 7" = 4500 K. To see if
reactions occur, we plot in Fig. 5 the g(r), the pair corre-
lation function (PCF), for CN for a select few of the EOS
points in Fig.4. The deviation from the molecular LM
model appears attributable to the interaction between C
and N. The emergence of molecular bonding is rapid as
the P and T are increased. While not as strong a peak as
the hydrogen bonds, this indicates that CN complexes,
whether diatomic or polyatomic in nature, are forming
in the system.

To understand the strength of the CN bonding, we per-
formed a bond autocorrelation function (BACF) analysis
which predicts the likelihood that a bond which forms at
t = 0 exists a time ¢ later. We followed the methodology
outlined in (Meyer et al. 2015). Our 7.yt was chosen from
the g(r) where the value of the molecular peak was most
distinguished from the first valley. For the T' < 3125 K,
the CN complex does not form. Once the system is hot
enough for H atoms to dislodge from their heavy part-
ners, the C and N can find each other to form complexes
with lifetimes around 7% ~ 120fs. Lifetimes were cal-
culated in the same manner as in (Meyer et al. 2015).
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F1G. 5.— Pair correlation functions for CN. As temperature in-
creases CN develops a molecular peak indicating interactions be-
tween C and N and that CN chemistry is occurring. This changes
the density landscape of the linear mixing model.

4.2. Diffusion Coefficients

The diffusions coefficient D, has been calculated for
each species « using the velocity autocorrelation function

1 t
/0 ;(Ui,a(o) ;0 (T))dT. (5)

D, = lim

t—oo 3

We calculated the diffusion coefficients for methane and
for the full 2:1:4 mixture along the planetary profiles.
The value for water are taken from (French et al. 2010),
while the values for ammonia are taken from (Bethken-
hagen et al. 2013). The results are shown in Fig. 6.
In general the diffusion coefficients in the ternary mix-
ture agree very well compared to those in the pure com-
pounds. Typically, we find them typically to agree within
20%, which is a satisfactory result, given that the uncer-
tainty is usually 10%. The most significant deviations
are found for the areas, which are characterized by phase
transition, e.g., in the demixing region in methane and
the superionic phase of water. For those phases, the dif-
fusion coefficients of the heavy particles vanishes for the
heavy ions within water and ammonia. At the same time,
we obtain values typical for a fluid phase in the ternary
mixture, where we do not find those phases.

5. PLANETARY MODELS
5.1. Why we compute a new Uranus model

The bulk composition and the internal composition
distribution of Uranus and Neptune are important top-
ics of investigation. They bear crucial information on our
understanding of giant planet formation and subsequent
evolution, as well as of the conditions in the solar nebula
from which they emerged.

An important hint on the bulk composition of Uranus
comes from its mean density, which is close to that of lig-
uid water. Indeed, the elements OCN are believed to be
abundant in Uranus. In the hydrogen-rich troposphere,
they chemically favor the supercritical fluid phases of
water, methane, and ammonia, while under conditions
at the time of formation the low-pressure ices phases of
these molecules were likely to prevail in the protoplanet
(Podolak & Reynolds 1984). Uranus’ gravity field indi-
cates a significantly denser deep interior than the outer
envelope with a separation at about 10 GPa, while the

precursor of demixing
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F1G. 6.— The self-diffusion coefficients of the constituents H,
C, N, and O in the real mixture (solid lines) along the plane-
tary profiles as a function of Uranus’ radius. Diffusion coefficients
marked by an orange box are artifical and just mark the demix-
ing/polymerization region of methane and the superionic regime,
where the respective diffusion coefficients vanish. The open circles
indicate the diffusion coefficients in the pure compunds shown here
exemplary for the water-only isentrope.

magnetic field can be explained by convective motions in
a conducting deep-seated shell. No theory of giant planet
formation, evolution, and planet structure exists that can
consistently explain these observations. Therefore, it is
important to explore a wide variety of planet structure
and formation models in order to achieve a consistent
view, that eventually enables to infer the properties of
the early solar system.

Uranus and Neptune are often modeled under the as-
sumption of few layers, in which rocks are confined to
the core and heavy elements in the envelopes assumed to
be mostly C-N-O-S (Podolak & Reynolds 1987; Podolak
et al. 1991; Hubbard et al. 1995; Nettelmann et al. 2013).
Furthermore, CNOS bearing molecules in giant planets
have sometimes been represented by water EOSs (Helled
et al. 2011; Nettelmann et al. 2013; see Redmer et al.
2011 for an illustration). Such state-of-the-art models
typically predict an inner envelope ice mass fractions of
~ 0.9 for Uranus, and high ice-to-rock ratios (I:R) of
~ 10x solar. It is noteworthy that entirely different
suites of Uranus models which assume smooth density
distribution throughout the interior (Helled et al. 2011)
or are based on random interior structure search for ac-
ceptable density distributions (Podolak et al. 2000), yield
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similar ice mass fractions. For Neptune, the situation is
less clear due to the higher observational uncertainty in
the gravitational moment J; (Nettelmann et al. 2013).

Of particular interest to this work are the Uranus mod-
els by (Podolak & Reynolds 1987). These authors applied
linearly mixed EOSs for the ices HoO, CH4, NH3 and HoS
based on Thomas-Fermi-Dirac theory for dense matter,
and an interpolation to ideal gas region at the low pres-
sures. In addition, they took into account the influence
of condensation on the temperature profile in the outer
envelope. As a result, it was found that the observed
rotation rate and gravitational harmonics can only be
reproduced by the models if the ice shell below the H-He
rich outer envelope is so extended that the total I:R ratio
amounts to high values of 16-36, i.e., about 6-14x solar.
However, supersolar I:R ratio have been deemed unreal-
istically, for rocks condense at higher temperatures and
thus a larger fraction of rocks should be confined to plan-
etesimals than in case of the ices (Podolak & Reynolds
1984; Hubbard & Marley 1989). On the other hand,
the capture radius of the protoplanet may be larger for
ice-rich than for rock-rich planetesimals, perhaps leading
naturally to an ice-rich envelope above a rock-rich planet
center (Podolak & Reynolds 1987).

Here we apply linearly mixed EOSs for H,O, CHy, and
NHj in solar portions to represent ices in the deep in-
terior of Uranus, and compute the first Uranus model
based on ab initio EOSs for the light ices. As in standard
few-layer models, we assume for simplicity an adiabatic
interior and confine rocks to the core. Our models are
a step forward from those of (Nettelmann et al. 2013),
who considered only water as a representative of ices in
the deep interior. Of course, the interior of Uranus may
be far complexer than modeled here. In particular, non-
adiabatic regions and significant amounts of rocks and of
H-He in the deep interior can not be excluded. However,
the mixing behavior of rocky materials (MgO, SiOq, FeS,
FeO) with ices and H-He is poorly understood yet. First
results indicate demixing between MgO and hydrogen
under Saturn core conditions (Wilson & Militzer 2013)
suggesting segregation of rocks to the center in the even
colder Uranus, as assumed here.

5.2. Results: Icy Uranus structure models

For our icy Uranus structure model we assume a sim-
ple three-layer structure with an isothermal core and
two adiabatic, homogeneous envelopes that differ in their
abundance of ices. The precise ice abundance ratios
in the planet are not known. For the inner envelope
(layer No. 2), we assume protosolar abundance ratios for

0:C:N, which corresponds to mass fractions of ZI({?O =

0.61, Z((12P)I4 = 0.31 and ZI(\12})13 = 0.08. In the outer en-
velope, ices are represented by the water EOS. The un-
known ice mass fractions in the two envelopes, Z(1) and
Z®@ are used to adjust the two measured gravitational
moments Jy and Jy. At the assumed sharp transition
between outer and inner envelope density and entropy
change discontinuously while P and T change continu-
ously. The transition pressure P;_o is then a variable
parameter, but we find acceptable icy Uranus models
only for P;_5 ~ 13 GPa. Details of our modeling proce-
dure are described in (Redmer et al. 2011; Nettelmann
et al. 2013).
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Under conditions of T' 2 3000 K and 2 10 GPa as in
the deep interior of Uranus, experimentally compressed
methane has been found to separate in to hydrogen and
diamond (Hirai et al. 2009). At present it is not clear
whether diamond formation also occurs in mixtures of
ices, and if it would sink to the center. To account for
the uncertainty of possible diamond formation and sink-
ing, we compute two different structure models. In our
Uranus model U15-1 we neglect possible diamond for-
mation. Methane is then assumed to remain miscible
in water and ammonia. In our Uranus model U15-2 we
account for possible diamond sedimentation by using a
diamond EOS (Correa et al. 2008) for the core material.
As size of the core is determined by total planet mass con-
servation (Redmer et al. 2011; Nettelmann et al. 2013),
which typically yields small (~ 1Mg) cores for Uranus,
the resulting diamond core mass is lower than the total
amount of available carbon. Therefore, the inner enve-
lope composition must includes some methane in order
to conserve the solar O:C ratio. In addition, the inner en-
velope contains the excess hydrogen from the dissociated
methane, in the amount corresponding to the central di-
amond core mass.

1 bar, 76 K

molecular

Fic. 7.— Two icy Uranus structure models with three homoge-
neous layers, separated by solid azimuthal lines. The radial direc-
tion scales linearly with planet internal radial distance from the
center, while the angle scales with mass abundance of the single
components. The left models shows our rock core model Ul5-1,
while the right one the diamond core model U15-2. Dashed lines
indicate phase boundaries of the single component EOS as labeled
in the right panel, according to (Redmer et al. 2011) for water,
(Bethkenhagen et al. 2013) for ammonia, and (Hirai et al. 2009)
for methane. The slim orange stripe shows the hydrogen fraction
that belongs to the sedimented diamond.

Figure 7 illustrates these two models. Both models
have low outer envelope ice mass fractions of respectively
15% and 12%, consistent with the models of (Nettelmann
et al. 2013). While in those earlier models the water
EOS was also taken representative of all ices in the in-
ner envelope, with the result of about 0.9 water and 0.1
H-He by mass there, the ice mass fraction in our present
models increases to respectively 0.994 and 0.975. This is
because the lower the mean atomic weight of the heavy
elements, the larger their abundances in order to con-
serve the mean mass density. We therefore also obtain
a larger and more massive core masses for our diamond
core model compared to rock core models. On particular,
the diamond core mass of 1.2 Mg imples 2% of excess



5.5. The linear mixing approximation for ices and its application to Uranus

Uranus and Linear mixing of ices 7

hydrogen in the inner envelope (orange colored in Fig. 7.
Our icy Uranus models are pretty cold, with core tem-
peratures of about 4500 K only. This is a result of the
low H-He mass fraction.

We also note that the deep internal H-He mass frac-
tion becomes very small. While its value is not strictly
constrained by formation models, those predict the si-
multaneous accretion of gaseous H-He and planetesimals
by the protoplanet before run-away gas accretion sets in
(Pollack et al. 1996; Mordasini et al. 2012). Our result-
ing low deep internal H-He mass fraction might indicate
escape of initially accreted H-He into the outer envelope.

As expected, the overall I:R ratio of our icy Uranus
models turns out to be large, i.e. 19 for rocky core model
U15-1 and infinite for the other one. Models with such
high LR ratios (Podolak & Reynolds 1987) have been
judged no realistic representation of the internal struc-
ture of Uranus (Hubbard & Marley 1989). We agree with
that possible conclusion regarding our models, albeit for
a different reason. The predicted present-day luminosity
of icy, adiabatic, quasi-homogeneous Uranus models has
been repeatedly shown to exceed the observed one (Hub-
bard et al. 1995; Nettelmann et al. 2013). This faintness-
problem of Uranus’ provides evidence for a more complex
internal structure than modeled here, in particular to a
largely superadiabatic interior (Hubbard et al. 1995; Net-
telmann et al. 2013). Our models show —an important
result of this work— that in that case the deep interior
must contain elements heavier than ices in order to con-
serve the mean density. Therefore, a superadiabatic in-
terior will tend to decrease the I:R ratio compared to the
values obtained here. Moreover, a superadiabatic inte-
rior for Uranus implies mixing of rocks with ices to some
degree. Once rocks are allowed for in the deep interior,
the maximum possible H-He mass fraction in the deep
interior increases as well (Helled et al. 2011), which may
be even more consistent with core planet formation mod-
els. Icy Uranus models with superadiabatic deep interior
have been subject to separate work (Nettelmann et al.
2016).

6. CONCLUSIONS

Overall, we find the linear mxing approximation to per-
form very well for the molecular compounds, water, am-
monia, and methane, inside the mantle of Uranus on the

basis of the EOS investigated here. For the binary 1:1
mixtures, which have been computed on a grid for pres-
sures up to 10 Mbar and temperatures up to 20000 K, we
find a maximum density deviation of 4%. At the same
time, the density deviation of the ternary mixture along
the three considered Uranus profiles is even smaller devi-
ating at most 3%. Hence, it is not necessary to construct
a broad variety of EOS, instead we suggest to construct
wide-range EOS for the pure substances water, ammo-
nia, and methane.

However, in terms of investigating the underlying phase
diagrams it is very interesting to study the mixtures. For
example, the existance of a superionic phase in the pres-
ence of methane is still unclear.

The diffusion coefficients for the individual compounds
in the mixture agree with the pure values as long as the
same phase is present. Apart from the diffusion coeffi-
cients, one should calculate the viscosity, which is a very
insightful property. Furthermore, the electronic trans-
port properties are of great interest as input for dynamo
simulations. It would be desirable to have a complete
set of transport and thermodynamic transport proper-
ties along the discussed planetary profiles like the data
set available for the hydrogen-helium mixtures along the
Jupiter adiabat (French et al. 2012).
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A. Equations of state for binary
mixtures

The equation of state for the 1:1 water-ammonia mixture has been calculated using an
initial fcc lattice, and also by using the orthorhombic lattices which we found from evolu-
tionary crystal structure prediction using the code XtalOpt [I89]. The results are shown
in Fig. [A.l] Some isotherms of the latter EOS are characterized by prominent kinks.
This feature indicates the phase transition from the dissociated fluid to the superionic
phase.

20~ 10 kK ‘
r § ]EE initial lattice N
s 6kK| —-— fcc P
5kK | @—e orthorhombic /|

Fig. A.l.: Specific internal energy over density of the 1:1 water-ammonia mixture calcu-
lated with an initial fcc (dashed lines) and initial orthorhombic (solid lines with circles) lat-
tices. The orthorhombic lattices were generated with evolutionary structure searches employing
XtalOpt [189].

For the results from the simulations with an underlying fcc lattice, this behavior is absent
except for the 6000 K curve, which has a kink at 4.25 g/cm®. Analyzing the diffusive
behavior and pair distribution functions, it is evident that the superionic phase does not
form properly for those calculations. Therefore, we conclude that structure searching is
a valuable tool to gain insight in unclear phase transitions.
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Furthermore, the EOS of the 1:1 water-methane and 1:1 ammonia-methane mixtures
have been calculated. However, for neither of the cases we carried out structure searches,
since we expect a much more complicated behavior compared to water-ammonia due to
the non-polarity of methane and possible demixing effects. Therefore, both EOS were
calculated from simulations starting with 54 molecules arranged on a bcce lattice. The
thermal and caloric EOS for all 1:1 mixtures of water, ammonia, and methane are shown
altogether in Fig. [A.2]

For the 1:1 mixtures of water-methane and ammonia-methane shown in Fig. [A.2] there
are no strong kinks in the caloric EOS as has been found for the 1:1 water-ammonia
mixture. However, the curves of the thermal EOS below 4000 K are crossing each other,
which might indicate phase transitions. For the water-methane mixture, we find fur-
thermore some indication of possible demixing as well as the formation of strong CO
bonds, which needs to be further investigated. Additionally, strong CN bonds have been
identified from our simulations of the ammonia-methane mixture. So far, the behavior of
this system remains unclear as soon as the demixing region of methane or the superionic
region of ammonia is reached.

Overall, the binary systems water-methane and ammonia-methane need to be further
investigated in future work. This should be done by starting from better suited lattices,
possibly such from structure searching or, in case of water-methane, by starting from
methane clathrates [13].

III
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