12 research outputs found

    The Relationship Between Per Capita Income, Uninsured Rates, and Cardiovascular Mortality in Georgia Between 1994 – 2016

    Get PDF
    Background: The association between cardiovascular mortality, per capita income and uninsured rates in Georgia have not been well described. Methods: Cardiovascular mortality rates, per capita income and uninsured rates were obtained for the years 1994-2016, and their relationships were analyzed using univariate and multivariate statistical techniques. Results: In bivariate analysis, a strong inverse relationship between cardiovascular mortality and per capita income (r = -0.917, p \u3c 0.0001) was detected, while bivariate analysis detected no relationship between cardiovascular mortality and uninsured rates. Both per capita income and uninsured rates were negative predictors of cardiovascular mortality in multivariate analysis. Conclusions: Per capita income increases in Georgia were strongly correlated with reductions in cardiovascular mortality. While there was not a linear correlation of healthcare coverage status and cardiovascular mortality, it demonstrated a protective effect in multivariate analysis

    Thrombopoietin: A Novel Bone Healing Agent

    Get PDF
    poster abstractCritical-size defects in bones do not heal spontaneously and usually require the use of grafts. Unfortunately, grafts have several limitations. To improve bone formation, many clinicians now use bone morphogenetic proteins (BMP), particularly in spinal fusion, fracture healing, and in critical-size defect regeneration. However, multiple side effects of BMP treatment have been uncovered including increased incidence of cancer. Thus, there is great interest in alternatives that allow for safe and effective bone regeneration. Here we show the ability of thrombopoietin (TPO), the main megakaryocyte growth factor, to heal critical-size femoral defects rodents. 5mm or 4mm segmental defects were created in the femur of Long Evans rats or C57BL/6 mice, respectively. The defects were filled with a novel bioabsorbable scaffold which was loaded with recombinant human TPO, BMP-2, or saline, and held stable by a retrograde 1.6 mm intramedullary Kirschner wire (rats) or 23G needle (mice). Xrays were taken every 3 weeks in rats and weekly in mice. Animal were sacrificed at 15 weeks, at which time micro-computed tomography (μCT) and histological analyses were performed. The results observed in mice and rats were similar. The saline control group did not show bridging callus at any time. Both the BMP-2 and TPO groups healed the defect, although bridging callus was evident at earlier times in the BMP-2 groups. However, the TPO groups showed a much more remodeled and physiologic contour on both Xray and μCT. μCT and histological analysis confirms that compared to BMP-2, TPO-treated specimens have a thicker cortex but smaller diameter and smoother contour. TPO appears to restore the original bone contour by stimulating osteoblastogenesis, allowing for periosteal bridging and stabilization to occur, while simultaneously stimulating osteoclast formation. Thus, TPO may serve as a novel bone healing agent

    A novel role for thrombopoietin in regulating osteoclast development in humans and mice

    Get PDF
    Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders

    Urinary Tract Stones and Osteoporosis: Findings From the Women's Health Initiative

    Full text link
    Kidney and bladder stones (urinary tract stones) and osteoporosis are prevalent, serious conditions for postmenopausal women. Men with kidney stones are at increased risk of osteoporosis; however, the relationship of urinary tract stones to osteoporosis in postmenopausal women has not been established. The purpose of this study was to determine whether urinary tract stones are an independent risk factor for changes in bone mineral density (BMD) and incident fractures in women in the Women's Health Initiative (WHI). Data were obtained from 150,689 women in the Observational Study and Clinical Trials of the WHI with information on urinary tract stones status: 9856 of these women reported urinary tract stones at baseline and/or incident urinary tract stones during follow‐up. Cox regression models were used to determine the association of urinary tract stones with incident fractures and linear mixed models were used to investigate the relationship of urinary tract stones with changes in BMD that occurred during WHI. Follow‐up was over an average of 8 years. Models were adjusted for demographic and clinical factors, medication use, and dietary histories. In unadjusted models there was a significant association of urinary tract stones with incident total fractures (HR 1.10; 95% CI, 1.04 to 1.17). However, in covariate adjusted analyses, urinary tract stones were not significantly related to changes in BMD at any skeletal site or to incident fractures. In conclusion, urinary tract stones in postmenopausal women are not an independent risk factor for osteoporosis. © 2015 American Society for Bone and Mineral Research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115895/1/jbmr2553.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/115895/2/jbmr2553_am.pd

    Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype

    Get PDF
    The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore