62 research outputs found

    Geospatial Technology/Traditional Ecological Knowledge-Derived Information Tools for the Enhancement of Coastal Restoration Decision Support Processes

    Get PDF
    This research investigated the feasibility and benefits of integrating geospatial technology with traditional ecological knowledge (TEK) of an indigenous Louisiana coastal population in order to assess the impacts of current and historical ecosystem change to community viability. The primary goal was to provide resource managers with a comprehensive method of assessing localized ecological change in the Gulf Coast region that can benefit community sustainability. Using Remote Sensing (RS), Geographic Information Systems (GIS), and other geospatial technologies integrated with a coastal community\u27s TEK to achieve this goal, the objectives were (1) to determine a method for producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal population that results from physical information derived from RS imagery and supported, refined, and prioritized with TEK, and (2) to demonstrate how such an approach can engage affected community residents who are interested in understanding better marsh health and ways that marsh health can be recognized, and the causes of declining marsh determined and addressed. TEK relevant to the project objectives collected included: changes in the flora and fauna over time; changes in environmental conditions observed over time such as land loss; a history of man-made structures and impacts to the area; as well as priority areas of particular community significance or concern. Scientific field data collection measured marsh vegetation health characteristics. These data were analyzed for correlation with satellite image data acquired concurrently with field data collection. Resulting regression equations were applied to the image data to produce estimated marsh health maps. Historical image datasets of the study area were acquired to understand evolution of land change to current conditions and project future vulnerability. Image processing procedures were developed and applied to produce maps that detail land change in the study area at time intervals from 1968 to 2009. This information was combined with the TEK and scientific datasets in a GIS to produce mapping products that provide new information to the coastal restoration decision making process. This information includes: 1) what marsh areas are most vulnerable; and 2) what areas are most significant to the sustainability of the community

    Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study

    Get PDF
    Objective. To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. Approach. Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. Main results. Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. Significance. Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function

    Local Foods in the OSU RPAC

    Get PDF
    ENR 2367This is a proposal for the installation of a hydroponic system in the RPAC, with a focus on local foods.Academic Major: Environmental Scienc

    Lexicon-Based Sentiment Analysis and Emotion Classification of Climate Change Related Tweets

    Get PDF
    The concerns for a potential future climate jeopardy has steered actions by youths globally to call the governments to immediately address challenges relating to climate change. In this paper, using natural language processing techniques in data science domain, we analyzed twitter micro-blogging streams to detect emotions and sentiments that surround the Global youth Climate Protest (GloClimePro) with respect to #ThisIsZeroHour, #ClimateJustice and #WeDontHaveTime hashtags. The analysis follows tweet scrapping, cleaning and preprocessing, extraction of GloClimePro-related items, sentiment analysis, emotion classification, and visualization. The results obtained reveal that most people expressed joy, anticipation and trust emotions in the #ThisIsZeroHour and #ClimateJustice action than the few who expressed disgust, sadness and surprise. #ClimateJustice conveys the most positive sentiments, followed by #ThisIsZeroHour and the #WeDontHaveTime. In all the evaluations, a considerable number of people express fear in the climate action and consequences. Thus, climate change stakeholders and policy makers should consider the sentiments and emotions expressed by people and incorporate such outcomes in their various programmes toward addressing the climate change challenges especially as it affects the ecosystem

    Expert system for controlling plant growth in a contained environment

    Get PDF
    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system"

    Expert system for controlling plant growth in a contained environment

    Get PDF
    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''

    Blending Geospatial Technology and Traditional Ecological Knowledge to Enhance Restoration Decision-Support Processes in Coastal Louisiana

    Get PDF
    More informed coastal restoration decisions have become increasingly important given limited resources available for restoration projects and the increasing magnitude of marsh degradation and loss across the Gulf Coast. This research investigated the feasibility and benefits of integrating geospatial technology with the traditional ecological knowledge (TEK) of an indigenous Louisiana coastal population to assess the impacts of current and historical ecosystem change on community viability. The primary goal was to provide coastal resource managers with a decision-support tool that allows for a more comprehensive method of assessing localized ecological change in the Gulf Coast region, which can also benefit human community sustainability. Using remote sensing (RS) and geographic information systems (GIS) mapping products, integrated with a coastal community’s TEK to achieve this goal, the research team determined a method for producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal population based on information derived from RS imagery prioritized with TEK. This study also demonstrates how such an approach can engage affected community residents who are interested in determining and addressing the causes and mitigating the decline of marsh habitat. Historical image data sets of the study area were acquired to understand evolution of land change to current conditions and project future vulnerability. Image-processing procedures were developed and applied to produce maps that detail land change in the study area at time intervals from 1968 to 2009. This information was combined in a GIS with acquired TEK and scientific data sets relating to marsh vegetation health and vulnerability characteristics to produce mapping products that provide new information for use in the coastal restoration decision-making process. This information includes: (1) marsh areas that are most vulnerable; and (2) the areas that are most significant to community sustainability

    Multiple-University Extension Program Addresses Postdisaster Oil Spill Needs Through Private Funding Partnership

    Get PDF
    In response to the Deepwater Horizon Oil Spill, the Gulf of Mexico Research Initiative (GoMRI) was formed to answer oil spill–related scientific questions. However, peer-reviewed scientific discoveries were not reaching people whose livelihoods depended on a healthy Gulf of Mexico. GoMRI and the four Gulf of Mexico Sea Grant programs partnered to develop a regional Extension program with a team of multidisciplinary specialists and a regional manager embedded within the Sea Grant programs. The team answered oil spill science questions from target audiences. The program leaders also identified the value of adding a regional Extension communicator to enhance their Extension products
    • …
    corecore