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CrossMark
Abstract
Objective. To compare neurological and functional outcomes between two groups of hospitalised
patients with subacute tetraplegia. Approach. Seven patients received 20 sessions of brain
computer interface (BCI) controlled functional electrical stimulation (FES) while five patients
received the same number of sessions of passive FES for both hands. The neurological
assessment measures were event related desynchronization (ERD) during movement attempt,
Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand
function involved the range of motion (ROM) of wrist and manual muscle test. Main results.
Patients in both groups initially had intense ERD during movement attempt that was not
restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored
towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in
FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES
group. The ROM of the wrist improved in both groups. Muscle strength significantly improved
for both hands in BCI-FES group. For FES group, a significant improvement was noticed for
right hand flexor muscles only. Significance. Combined BCI-FES therapy results in better
neurological recovery and better improvement of muscle strength than FES alone. For spinal
cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a
long-term assistive device for the restoration of a lost function.

Keywords: brain computer interface, functional electrical stimulation, tetraplegia, rehabilita-
tion, hand

(Some figures may appear in colour only in the online journal)

1. Introduction

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 3.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOIL

Brain computer interface (BCI) systems have the capability of
using brain activity to control an external device or to train
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users to voluntary modulate the activity of their brain. Motor
imagery (MI) based BCI in combination with functional
electrical stimulation (FES) is an application which serves
both purposes; MI is used as a strategy to control an external
device (FES) and at the same time it activates the sensory-
motor cortex, the activity of which might be affected by
various neurological conditions. BCIs controlled FES has two
main applications for neurologically injured patients: to
restore the lost function as an assistive device for a long term
use (Pfurtscheller et al 2003) or to improve a partially pre-
served function. In the latter case, BCI-FES is used as a
rehabilitative device on a short-term basis (Fei et al 2008,
Daly er al 2009, Tan et al 2011, Tam et al 2011, Li et al 2014,
Mukaino et al 2014, Young et al 2014).

The electrical stimulation of muscles through FES
simultaneously activates sensory and motor pathways; the
evidences of the therapeutic effect of FES involve both
functional and neurological recovery (Gater et al 2011,
Knutson et al 2015, Lai et al 2016). Likewise, there are
evidences that MI promotes neurological and functional
recovery in stroke patients (Page et al 2007, 2009). It is
believed that the main advantages of rehabilitation based on
BCI-FES over FES or BCI alone, is that it relies on patient’s
active intention to move and it simultaneously activates sen-
sory and motor pathways, thus promoting neuroplasticity
based on associative, Hebbian learning (Hebb 1949).
Experiments on able-bodied people showed that motor
evoked potential is enhanced more when grasp function was
guided by BCI-FES than when it was guided by either BCI or
FES alone (McGie et al 2015). In a recent study by our group
(Reynolds et al 2015) we compared event-related desyn-
chronization (Pfurtscheller and Lopes da Silva 1999) in three
experimental paradigms: passive FES, motor imagery (MI)
until FES activation and motor imagery throughout FES,
showing strongest desynchronisation for a combined MI and
FES action.

Most publications advocating BCI-FES for rehabilitation
purpose are case studies on stroke patients (Fei et al 2008,
Daly et al 2009, Tan et al 2011, Tam et al 2011, Mukaino
et al 2014, Young et al 2014). Larger studies or studies
including other groups of patients are rare and only recently a
BCI-FES study on stroke patients has been published
including a control and a treatment group (Li ef al 2014). Li
et al study demonstrated that compared to patients receiving
FES alone, patients receiving BCI-FES achieved better
functional and neurological recovery. Another randomised
controlled trial on stroke patients (Kim et al 2015) showed
better functional improvement in patients receiving BCI-FES
as compared to patients receiving FES only. However, they
did not present brain activity pre and post therapy, thus
lacking the evidence of neurological recovery. Also recently,
our group showed the feasibility of BCI-FES therapy on two
sub-acute spinal cord injured patients. In that study we
showed that BCI-FES could be repeatedly therapeutically
used in incomplete tetraplegic patients in a hospital setting
(Vuckovi€ et al 2015) but we did not measure the effect of the
therapy. In the current pilot study, we present the neurological
and functional outcomes of a treatment by measuring the

Table 1. Information about patients. First 7 patients received BCI-
FES therapy, last 5 received FES.

Ps Injury level ASIA Age
1 Co6 C 70
2 C4 B 25
3 C6 B 32
4 C5 C 20
5 Co6 C 74
6 C5 B 51
7 C6/7 C 61
8 C5 C 36
9 C5/6 C 61
10 C6 C 75
11 C4 B 51
12 C6 C 64

range of motion (ROM), muscle strength, the intensity of
event-related synchronisation/desynchronisation and somato-
sensory evoked potential (SSEP). We compare outcomes
between the group of patients receiving 20 sessions of BCI-
FES hand therapy with a control group receiving the same
number of therapy sessions with passive FES.

2. Materials and methods

2.1. Patients

Twelve subacute patients with tetraplegia (12 male,
51.7 £+ 18.4; min 20, max 75) participated in the study. All
patients were three months or less post-injury, therefore they
were still at a hospital and were receiving a daily standard
hand therapy in addition to the experimental therapy (table 1).
All patients had incomplete injury, ASIA B or C. This means
that they had a partially preserved sensation but no preserved
movement (ASIA B) or had partially preserved both sensation
and movement (ASIA C) (Marino et al 2003). Their level of
injury was cervical, C4-C7 affecting both arms/hands and
legs. The semi-random order of recruitment was created in
advance assigning patients to one or the other treatment
group, due to the small number of patients. The study has
been approved by the National Healthcare Service Regional
Ethical Committee. This study is a registered clinical trial
NCT01852279.

2.2. Initial and final assessments

The study consisted of three phases: initial assessment,
treatment/therapy sessions and final assessment. The initial
and final assessments consisted of identical tests. The tests
were divided into neurological and functional. The neurolo-
gical tests comprised cue-based movement attempts (MA)
which involved electroencephalography (EEG) recording
during the attempted movements of the left and right hand
and the SSEP of the median and ulnar nerves of both hands
(i.e. 4 nerves were tested per patient). A functional assessment
consisted of the measurement of the ROM of the left and right
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wrist and of the Oxford Manual Muscle Test MMT, (Por-
ter 2013) of the hand, arm and shoulder muscles. In order to
minimise patients’ discomfort functional and neurological
assessments were performed on different days.

2.2.1. Cue-based movement attempt. A standard cue-based
paradigm was implemented with rtsBCI, a part of the open
source Biosig toolbox (Vidaurre et al 2011), implemented
under Simulink, MATLAB. Patients sited in their wheelchairs
approximately 1.5 m from a computer screen. A trial started at
t = —3sand ended at t = 3 s. At = —1 s a warning cue (a
cross) was presented at the screen, followed by an execution
cue (an arrow) at t = 0 s. The warning cue stayed on the
screen till ¥ = 3 s, and thereafter the screen stayed blank for a
random period which was between 1 and 3 s before the next
trial began. The total time between two trials was random,
between 7 and 9 s. There were two types of arrows i.e.
execution cues, an arrow pointing to the right for MA of the
right hand and to the left for the MA of the left hand. Patients
were instructed to attempt waving their hand continuously
from t = 0 s till # = 3 s, i.e. while they saw a cross on the
screen. Note that unlike able-bodied persons, paralysed
people can differentiate between the imagination of
movement, a movement attempt, and an overt (executed)
movement. We considered MA being more appropriate task
than the imagination of movement, because the aim of the
study was the restoration of voluntary hand movement. There
were 120 trials (60 for the right and 60 for the left hand)
divided in 4 runs each consisting of 30 trials (15 for
each hand).

During this task patients’ multichannel EEG was
measured with 48 electrodes placed according to 10/10
system (Jurcak et al 2007) using usbamp device (Guger
technologies, Austria). Electrodes covered the central region
of the sensory-motor cortex, the parietal cortex and sparsely
covered the frontal and occipito-temporal cortices. Forty
seven electrodes were used to record EEG while one electrode
was placed at the lateral cantus of the orbicularis oculi of the
right eye to record electrooculogram (EOG). EEG was
recorded with the sampling frequency of 256 samples s
with respect to the linked-ear reference. Impedance was
initially set and later kept under 5 k{2, occasionally checking
its values on a graphical user interface of a usbamp
proprietary Simulink block in between experimental sub-
sessions. A ground electrode was placed at the electrode
location AFz. EEG signal was filtered on-line between 0.5
and 60 Hz and was notch filtered at 50 Hz using the IIR
digital Butterworth filter built into a modular amplifier.

2.2.2. Off-line analysis of EEG during movement attempt.

Continuous data were split into 6 s long trials, starting at
t = —3 s and ending at r = 3 s, with respect to an execution
cue. Datasets of each patient were decomposed into
independent components (IC) (Hyvarinen and Oja 2000)
using ‘Infomax’ algorithm implemented in EEGlab (Delorme
and Makeig 2004) under Matlab. IC transformation provides
IC components and a transformation matrix. The components

were visually inspected and components corresponding to
instrumental and biological interferences (line noise, EOG,
EMG and ECG) were removed by setting their value to 0,
through EEGLab graphical user interface. On average 5-10
components were removed. Following this, signal was back
projected from IC into EEG domain by multiplying new IC
matrix with the inverse of the transformation matrix. A
common average reference was computed for all channels.

Time-frequency analysis was performed in EEGlab based
on event-related spectral perturbation (Makeig 1993), the
extension of event-related synchronisation /desynchronisation
(ERD/ERS) analysis (Pfurtscheller and Lopes da Silva 1999).
The baseline period was selected from t = —2 s till t = —1 s.
The Morlet wavelet transform was used to perform a time
frequency analysis in 3-60 Hz, with a Hanning-tapered
window applied; the number of cycles was set to 3 at the
lowest frequency.

An average ERD/ERS across patients was calculated in
EEGlab. This was used to create the average ERD/ERS scalp
maps for a chosen frequency band and time window. A
statistical non-parametric method with Holm’s correction for
multiple comparisons (Holms 1979) was used to test for
statistically significant differences between ERD/ERS scalp
maps before and after treatments of patients within a group,
with a significance level set to p = 0.05.

2.2.3. Somato-sensory evoked potential. A SSEP is the
response of the central nervous system to an electrical
stimulation (Gugino and Chabot 1990, Cruccu et al 2008).
The SSEP may infer motor functions on the assumption that
an injury severe enough to damage the sensory pathways may
also affect the motor pathways. The purpose of SSEP analysis
was to detect the latency and the amplitude of the N20 peak
that occurs around 20 ms following the electrical stimulation
of the upper limbs. The peak has a highly repeatable latency
in able-bodied people. The increased delay of N20 is an
indicator of the damage of the neural pathways, resulting in
axon demyelination. The demyelination in turn causes the
reduced propagation velocity of action potentials along the
axon, manifested as the increased latency of N20 peak. In
more severe cases, when some nerve fibres are severely
damaged, the amplitude of N20 is reduced or completely
absent (Curt and Dietz 1999). The recovery of the neural
pathways, followed by re-myelination, may result in the re-
appearance of N20 and in a reduced N20 latency.

In the current study SSEP was measured for the left and
right median and ulnar nerves, as these two nerves share
innervation of the wrist and fingers. Electrodes were attached
on the surface of the skin above the corresponding nerves at
the wrist. The nerves were stimulated one at the time using a
short pulse electrical stimulation (Model DS7, Digitimer,
UK). A stimulation intensity was set so that a small visible
twitch could be observed at the thumb for the median nerve
and at the little finger for the ulnar nerve. For each nerve,
electrical stimulation was delivered 250 times with a
frequency of 3 Hz. SSEP of the right hand median and ulnar
nerve was measured at electrode location CP3 and of the left



J. Neural Eng. 13 (2016) 065002

B C A Osuagwu et al

hand nerves at the electrode location CP4. EEG was recorded
with usbamp, with a sample rate 4800 Hz. The EEG signal
was band pass filtered between 2 and 2000 Hz and notch
filtered at 50 Hz; individual responses were averaged with
respect to the onset of stimulation.

2.2.4. Measurement of the ROM of the wrist. In patients with
incomplete tetraplegia who have partially preserved control of
movement, the ROM is reduced, as compared to the able-
bodied people. The ROM of the right and the left hand wrist,
during extension and flexion was measured using a Zebris
system (Zebris Medical GmbH, Germany) which measures the
travel time of ultrasonic pulses. The pulses are emitted by three
stationary transmitters and are recorded by small markers which
are ultrasound microphones attached to the hand. The Zebris
system markers were placed on the following bony landmarks
on the subject’s hand: the radius (marker 1), carpometacarpal
joint (marker 2) and the carpometacarpal bone (of the index
finger or the thumb, marker 3). The ROM was calculated as an
angle between the intersecting imaginary lines formed between
markers 2-3 and markers 1-2.

2.2.5. Manual muscle test. The original test has 6 grades,
ranging from O to 5. The score of 0 equals no contractions in
the muscle, 5 equals the ability to hold test position against
strong pressure. We used the extended version with
subgrades: 0, —1, 1, 14, —2...5 (Freze et al 1987 adapted)
which were converted into integer numbers 0, 1.2, 3....14 for
the purpose of a statistical analysis. Due to the nature of the
injury, patients initially had better preserved the voluntary
control of muscles in the shoulders and upper arms
(MMT = 3 to 4, i.e. (3) can move against gravity and (4)
can also withstand moderate resistance) than of the forearm,
wrist and hand. The initial MMT of most of the forearm /hand
muscles was between 0 and 2 (MMT = 2 moves through the
ROM through a horizontal plane, i.e. cannot resist gravity).
Muscles included in the analysis were muscles tested as the
part of a regular clinical practice at the hospital. From the
reason of low functionality of hands, we did not test the
activities of daily living, as they would be typically tested in
e.g. stroke patients. While each muscle has been tested
individually, because of the small number of participants, we
grouped muscles according to their function, thereby getting
larger numbers for statistical analysis. We tested muscles
controlling the shoulder, upper arm, forearm/wrist, hand
extensor and hand flexor muscles, although we expected that
treatment would primarily influence wrist and hand/finger
muscles. Muscles were grouped as follows: muscles
controlling shoulder (latissimus dorsi, pectoralis major,
serratus anterior and deltoid), upper arm muscles (triceps,
biceps), lower arm muscles controlling flexion, supination
and pronation (supinator, pronator, brachioradialis),
extensor muscles of fingers and wrist (extensor digitorum
communis, extensor carpi radialis brevis and longus), flexor
muscles of fingers and wrist (flexor carpi radialis and flexor
digitorum profundis). Nonparametric statistical analyses were
performed due to the relatively small number of samples

(minimum 10 per group, e.g. 2 muscles in the group of 5
patients). To compare the results of MMT test within a group,
a paired Wilcoxon sign rank test was used, while to compare
between groups a Wilcoxon rank sum test was applied.
Following this, a Holm—Bonifferoni correction for the
multiple comparisons was applied. All numerical procedures
were performed in Matlab (Mathworks, USA).

2.3. Therapy sessions

Treatment consisted of 20 sessions, organised 3-5 times
weekly. Each session lasted approximately one hour, depending
on patients’ availability. One group of patients received active
therapy; they attempted hand movements that were detected by
BCI which then activated FES applied to their hand muscles
(BCI-FES group). The other group of patients received passive
on—off FES therapy (FES group). The FES group got the same
amount of stimulation as BCI-FES group but the stimulator was
activated automatically, following 10 s on and 10 s off pattern.
In both groups, one hand was trained at a time, as that is a
standard practice in a conventional therapy.

2.3.1. Offline cue-based BClI feature extraction and classifier
computation. At the start of a therapy session, a quick off-line
EEG recording was obtained. The EEG recording consisted of
20 trials of MA for each hand and followed the experimental
protocol described in 2.2.1. BCI features were based on time-
domain parameters (TDP) (Vidaurre et al 2009). The recorded
data was separated for each hand and the data for each hand was
further split into baseline (from # = —3 to t =0 s) and MA
(from t = 0 to t = 3 s). The aim was to use the data to classify
between the MA and the baseline, for each hand separately.
Performing such classification should provide a reasonable
initial classification accuracy for the on-line session and reduce
the need to record large training data. We previously tested the
algorithm on  able-bodied people (Osuagwu and
Vuckovic 2014), showing that a small training data set of
about 20 trials results in an initial classification accuracy
between 75% and 100%. Computed classifier parameters were
then further updated and refined during an on-line BCI session,
as described later in section 2.3.2. in order to improve the online
performance.

The time domain features of the separated data were
calculated for 7-30 Hz EEG frequency band using
equation (1)

=0, ...p, (1)

TDP = (var
de/

dxmf')

)
where X(¢) is a wide-band EEG, ¢ is a current sample, j is a
derivative (p =9), ‘var’ is a variance operator and (.)
represents a smoothing/averaging operator. The variance
operator in this equation acts as a band-power operator since
the variance of filtered centred (mean = 0) signal is equal to
the band power (Vidaurre et al 2009). The BCI setup showing
the computation of TDP is shown in figure 1. The squaring
and smoothing, performed over 1 s is the part of a band-
power calculation. Following the band-power calculation, the
logarithmic transformation of TDP parameters was performed
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Figure 1. BCI setup showing computation of TDP.

to enforce a normal distributions needed for classifier based
on linear discriminant analysis (LDA) (Fukunaga 1990). LDA
is a technique used to project data onto a low dimensional
space to enable the separation of the data into classes. The
classes are separated using a hyperplane that maximizes data
separability. LDA can be expressed as

h(f)y=A" -f.(M, q), 2)

where f.(M, g) denotes an M dimensional feature matrix with
g observations of class ¢ (¢ = 1, 2), A is a transformation and
h(f) is a linear discrimination function. The expected value
and the measure of scatter for each class in the projection
space are obtained from the corresponding values in the
original space . and Y. using transformations

3

“

The best line on which to project f is determined by
maximising the Fisher’s criteria

ﬁc =A". He>
ic - AT . Ew

~ ~ 2
sy = =l )
X1+
where the numerator is a between class scatter and the
denominator is a within class scatter.

The class of the output # depends on which side of the
separation plane it lies. The TDP features were used to
compute an initial LDA classifier, which classified between a
MA and a baseline for each hand. The initial classifiers were
stored and later used as initial values for an online classifier.

2.3.2. On-line BCI based on movement attempt. During a
therapy session, a BCI was used on-line with classifiers to
discriminate between a hand movement and no movement. To
improve the performance of BCI on-line LDA classifier, the
mean values of both classes and a within class covariance
matrix (equations (3) and (4)) were updated on-line. This was

necessary due to the small number of off-line trials. Short off-
line training was needed due to a limited availability patients
had for the study. Typically patients had 1 h for BCI setup
and for training of both hands.

During therapy sessions, patients’ EEG was recorded from
three pairs of bipolar electrodes, CP3—CF3, CPz—CFz and CP4—
CF4, located over the sensory-motor cortex. Bipolar configura-
tion is convenient for supressing the common sources of
interferences recorded over both electrodes, such as line noise,
EOG or EMG interference. EEG was recorded with usbamp,
with a sampling frequency 256 Hz, band-filtered online between
0.5 and 30 Hz (5th order Butterworth filter). The ground
electrode was attached to the left ear, monopolar reference to the
right ear and the impedance was kept under 5 kf2.

A difficulty or the threshold of activation of a BCI could
be adjusted, so the difficulty could be e.g. increased to reduce
a false positive rate or decreased to make the activation easier
for a patient who is tired or has a low concentration. The
difficulty was adjusted by setting the length of the buffer, i.e.
a time sequence containing a classifier output in which a
desired class (a left or right hand MA) had to be successfully
detected. A classifier made a decision based on the EEG
sequence of length b (typically b = 1.5-2 s, while the
maximum allowed length was B =3 s or 768 samples).
However, the classifier could make a decision based on a
portion period called f. So if a total sequence for a particular
training day is b = 2 s, with maximum sequence B = 3 s and
f = 75% then difficulty d is 50% (equation (6)). Note that this
only affected the length of the buffer containing the outputs of
a classifier, and did not in any way affect classifier features or
a single outputs of a LDA classifier.

25-0.75

_br _
dﬁ? = =0.5. 6)

On each therapy session a patient performed 30—40 MA
of each hand, separated in sub-sessions, consisting of 20
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Figure 2. The timing of one trial during a therapy session for BCI-FES group. A motor attempt (MA) started upon the presentation of a cue (a
cross) on a computer screen and lasts for maximum 10 s. The initiation of FES stimulation sequence, based on the content of buffer b, of a
classification output, started at time 7. The FES sequence consisted of a repetitive hand opening and closing in total duration of 10 s, until
T + 10 s. The system was silent (cold not be activated) for a semi-random period of time, between 1 and 4 s. Following this, another cue was
presented on a computer screen to commence next MA. EPL:Extensor pollicis longus; ED: Extensor digitorum; FDS: Flexor digitorum

superficialis; FPB: Felxor policis brevis.

trials. Each successfully detected movement attempt resulted
in the activation of a FES, as described later in the text.

During therapy sessions, a patient sit in front of a
computer screen, attempting a movement upon the appear-
ance of a visual cue. The MA was facilitated by a feedback in
the form of a gauge (figure 1). Patients were told that during a
MA, when a gauge indicator reaches 0, there will be the
activation of the set of electrodes attached to their hand
muscles in a predefined order. After each trial sub-session,
patients got a numerical score (out of 20 trials) on the screen
about their performances.

Four bipolar electrodes were attached over the wrist and
hand/thumb extensor and flexor muscles. This setup enabled
patients to perform a grasp by opening and closing their hand.
The electrodes were attached to sequentially stimulate the
extensor digitorum, extensor pollicis longus (extensor
muscles), flexor digitorum superficialis and flexor policis
brevis (flexor muscles). The stimulation of the first two
muscles resulted in opening of the hand and four fingers
(index finger to pinkie), followed by a thumb abduction; a
subsequent stimulation of two flexor muscles resulted in
closing of the hand. The whole stimulation sequence,
including the opening and closing of a hand, lasted 10 s.
The same setup was used for both patient groups. The main
difference was that BCI-FES group had to activate FES by
attempting to open and close the hand and for FES group
stimulator was activated automatically repetitively with 10 s
on and 10 s off. A temporal sequence for one MA attempt in
BCI-FES group is shown in figure 2.

2.3.3. Functional electrical stimulation. FES was delivered
using a multichannel FES device (Rehastim, Hasomed,
Germany). The frequency of stimulation was 26 Hz, the
pulse width was 200 us and the current amplitude varied
between 15 and 35 mA and was individually chosen for each

patient to produce a visible muscle contraction without
discomfort.

3. Results

3.1. Attempted movement ERD/ERS

Average ERD/ERS scalp maps during a MA for both groups
were created for 0, o, 81 (12-16 Hz) and (2 (16-24 Hz)
bands. A difference in scalp maps before and after therapy
was calculated for each group. Largest differences were found
for BCI-FES group in (1 for both hands (figure 3). Both
groups had a strong widespread ERD activity, including
frontal and parietal regions, before the therapy. For the left
hand, a strong ERD can be noticed not only in the alpha and
beta bands but also in the theta band. Although statistically
significant differences in BCI-FES group were found in the
alpha and lower beta bands only, a spatial shift of ERD
towards the central region can be noticed in all frequency
bands. It should be mentioned that a correction for multiple
comparison was applied, which prevents type I error on each
single electrode but does not take into account relations
between adjacent electrodes. i.e. changes in the spatial dis-
tribution of ERD. The stronger lateralisation of ERD during
MA of the left hand, towards the right side of the cortex can
be noticed, in particular in the theta and the alpha band.
Contrary, in the FES group, ERD remained unchanged fol-
lowing the therapy.

Similar situation can be observed for the MA of the right
hand in BCI-FES group, with statistically significant changes
in the theta and lower beta band, the overall shift of ERD
towards the central region and a lateralisation to the left side
of the cortex (figure 4). The ERD activity remained strong
and wide spread following a therapy in FES group.

Previous studies indicated that initially, a parietal shift of
ERD is due to an injury (figures 3 and 4, both groups, row
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Figure 3. Averaged event-related desynchronization/synchronisation maps (ERD/ERS) for different frequency bands averaged over

t = 0.5-2 s, during the movement attempt of the left hand in two patient groups before and after 20 therapy sessions. Electrodes marked in
bold show the electrode locations with statistically significant differences between ‘before’ and ‘after’ condition. (a) Theta ¢ band (4-8 Hz),
(b) Mu/alpha y band (8-12 Hz), (c) Beta 51 band (12-16 Hz), (d) Beta 52 band (16-24 Hz).

‘before’) and that in patients who functionally recover the
activity, the cortical activity shifts back toward the central
region (Green et al 1998), as seen in able-bodied people.

In FES group only, a single electrode (CF1) showed a
significant ERD increase for the §1 (12-16 Hz) band for the
MA of the right hand. No significant changes were noticed in
the frontal, parietal or occipital regions.

3.2. Somato-sensory evoked potentials

All seven patients from BCI-FES and four from BCI (one
patient missing) were available for this test. Results in table 2
show the number of patients in whom a SSEP response had a
visible N20 peak of the medial and ulnar nerve pre- and post-
therapy. SCI often results in delayed SSEP responses (Spiess
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Figure 4. Averaged event-related desynchronization/synchronisation maps (ERD/ERS) for different frequency bands averaged over

t = 0.5-2 s, during the movement attempt of the right hand in two patient groups before and after 20 therapy sessions. Electrodes marked in
bold show the electrode locations with statistically significant differences between ‘before’ and ‘after’ condition. (a) Theta 6 band (4-8 Hz),

(b) Mu/alpha « band (8-12 Hz), (c) Beta 31 band (12-16 Hz), (d) Beta 32 band (16-24 Hz).

Table 2. The number of patients who had visible N20 peak in their SSEP pre/post therapy in both patent groups.

Median Ulnar
Left Right Left Right
Before After Before After Before After Before After
BCI-FES 4 6 2 5 1 3 1 2
FES 2 2 1 0 1 1 0 0
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Figure 5. Somato-sensory evoked potential of the left ulnar nerve in
ps 1, before (pre) and after (post) 20 therapy sessions. In pre-
recording N20 is visible around 29 ms while in post-recording it can
be noticed at 24 ms as first and maximum negativity in the SSEP.

et al 2008). Therefore we were looking into a prominent
negativity morphologically similar to N20 in able-bodied
people (Cruccu et al 2008) that would occur at around 20 ms
or within the following 10 ms.

In all patients in BCI-FES group who initially had a visible
N20, the latency of the peak was reduced post-therapy, indi-
cated the faster propagation of APs due to re-myelination. The
average N20 latency over all SSEP of both hands and both
nerves was 25.0 £ 3.1 ms pre-therapy and 23.5 4+ 2.7 ms post-
therapy, indicating neurological recovery. On the contrary, in
FES group, N20 latency slightly increased from 23.5 & 1.6 ms
to 23.9 £+ 1.9 ms showing no evidences of recovery. Figure 5
shows an example of SSEP peak N20 pre and post therapy in
patient 1 (psl in table 1) who received BCI-FES therapy. The
N20 latency decreased from around 29 ms pre- to 24 ms post-
therapy and the amplitude (peak to peak) increased.

3.3. The ROM

Eight patients were available for both initial and final
assessment of the ROM of the wrist: five patients from BCI-
FES group and three patients from FES. All patients in both
groups, except patient 11 (psl1) from FES group, achieved
the increased ROM of both wrists following the therapy (right
hand shown in figure 6, left hand in figure 7). Patient 11 had
not regained any wrist movement (ROM stayed 0) hence no
bar is shown. In this patient, corresponding MMT scores were
zero. Numerical values of ROM before and after therapy,
expressed as angles in degrees, are shown separately for
flexion (figures 5(a) and 6(a)) and extension (figures 5(b) and
6(b)). For BCI-FES group, a median ROM for the right hand
(flexion & extension) increased from 9.9° pre- to 25.2° post-
therapy while for the left hand it increased from 6.7° to 23.5°.
For FES group, a median ROM for the right hand increased
from 19.4° pre- to 37.8° post-therapy while for the left hand
ROM it slightly increased from 24.4° to 27.8°. It was not

possible to perform a statistical analysis due to the small
number of participants (not all participants took part in
this test).

3.4. Manual muscle test

The strength of muscles was tested before and after a therapy
for 14 different muscles in all 12 participants. Muscles have
been grouped for a statistical analysis into five groups:
muscles controlling shoulder, muscles of the upper arm,
muscles controlling lower arm and muscles located in the
lower arm controlling wrist/hand flexion and extension.

A Wilcoxon rank sum test showed no statistically sig-
nificant difference in MMT scores before the therapy between
BCI-FES and FES groups for any of the muscle groups (right
shoulder p = 0.7189, right upper arm p = 0.0997, right
forearm p = 0.4928, right wrist/fingers extension
p = 0.7460, right wrist/finger flexion p = 0.2902, left hand
shoulder p = 0.7433, left hand upper arm p = 0.4149, left
lower hand p = 0.4060, left wrist/finger extension
p = 0.5910, left wrist/finger flexion p = 0.9100).

Following treatment MMT significantly improved in all
muscle groups of the right hand in BCI-FES group while FES
group improved strength only in shoulder muscles and mus-
cles controlling flexion. For the left hand, in BCI-FES group,
MMT scores significantly improved for all muscles groups.
On the contrary, for FES group, MMT scores significantly
improved for shoulder muscles only (table 3). When Holm—
Bonifferoni test for correction for multiple comparisons (5
comparisons per group) was applied, all MMT scores for
BCI-FES group remained statistically significant while none
of MMT scores for FES showed a statistically significant
improvement.

4. Discussion

This study demonstrates the application of BCI-FES as a
rehabilitative device for patient with incomplete tetraplegia.
Patients who are still in a hospital post-injury have a very
limited time for a BCI-FES therapy (Rupp 2014) because they
already receive a standard daily hand therapy. BCI algorithms
should therefore have a quick electrode setup and should
require the minimum (if any) daily offline adjustment of
parameters. We applied a BCI algorithm based on time
domain parameters with an on-line adaptation (Vidaurre
et al 2009), which allows the brief update of training para-
meters and requires smaller number of electrodes than what is
required for algorithms based on common spatial patterns
(16-63 electrodes Fei et al 2008, Li et al 2014). Six EEG
electrodes (3 bipolar recordings) used in this study is a
comparable number with the number of electrodes required
for algorithms based on classical EEG bandpower and fea-
tures extracted from a specific frequency bands (2—12 elec-
trodes Tam et al 2011, Mukaino et al 2014, Young et al 2014,
Vuckovié et al 2015).

Due to the injury to the spinal cord rather than to the
brain, most research groups consider BCI-FES to be an
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Figure 6. The range of motion during right hand wrist extension (upper row, (a) and (b)) and flexion (lower row, (c) and (d)) of the right hand

wrist before and after therapy for each single patient in both groups.
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Figure 7. The range of motion during left hand wrist extension (upper row, (a) and (b)) and flexion (lower row, (c) and (d)) of the right hand
wrist before and after therapy for each single patient in both groups.

assistive rather than a rehabilitative device for spinal cord
injured patients. Our paper however compares the neurolo-
gical and functional outcome of two hand therapies in
incomplete sub-acute tetraplegic patients. A BCI-FES therapy
involved active participation of patients, resulting in the
combined activation of the efferent and afferent pathways
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while FES therapy involved a passive stimulation of the
sensory-motor pathways. Although the role of a patient in
FES therapy is passive, there are evidences that the electrical
stimulation of muscles also promotes a functional and neu-
rological recovery (Gater et al 2011). The difference between
recoveries of two groups of patients cannot be solely
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Table 3. Results of a Wilcoxson sign rank test (p values) between MMT scores before and after 20 therapy sessions, averaged over muscles
within the same group. ‘R’ is for the right hand and ‘L’ is for the left hand. Significance level was p = 0.05.

Shoulder Upper arm  Lower arm  Extension  Flexion
BCIFES R  0.00005 0.0313 0.00038 0.00028 0.0039
FES R 0.0104 0.0977 0.0630 0.1335 0.0352
BCI-FES L 0.000023 0.0039 0.00026 0.000.2 0.0078
FES L 0.0184 0.1719 0.4424 0.1968 0.1406

attributed to BCI because the combination of BCI and FES is
likely to promote a better recovery than each of these thera-
pies independently. Therefore, ideally, there should be
another group receiving a BCI therapy only, but this was not
feasible due to the small number of available patients.

Previous BCI-FES rehabilitation studies on stroke
patients reported increased ERD, from electrode located over
the sensory-motor cortex, following therapy (Li et al 2014,
Mukaino et al 2014). In a previously published report on a
subset of 4 patients included in this study we noticed the same
phenomena (Osuagwu et al 2014). In addition, we noticed the
unusual pattern of gamma band ERS in parallel with alpha/
beta ERD during MA, in some patients. This confirms the
results of previous studies, on patients with complete spinal
cord injury (Miiller-Putz et al 2007) reporting altered ERS/
ERD patterns as compared to able-bodied people.

The novelty of the current study is that rather than ana-
lysing ERD at isolated electrodes, we analysed changes of
ERD over the whole cortex, presented by scalp maps, which
enabled us to recognise the spatial restoration of the cortical
activity. Before a therapy, both groups had a strong, wide
spread, cortical activity during MA, which spread towards the
parietal and frontal cortex. Following the therapy, only BCI-
FES group, actively involved in the therapy, restored a cen-
trally located cortical activity during MA. The same trend was
noticed across all four analysed frequency bands accom-
panied with the visible lateralisation of cortical activity fol-
lowing the treatment. Most consistent changes were noticed
in the lower beta (12-16 Hz) band for both hands though
significant changes in the activity of the parietal cortex were
also found in the alpha band for MA of the left hand and in
the theta band for MA of the right hand. For FES group, there
was no reduction of ERD outside the sensory-motor cortex;
significant changes in ERD were found for MA of the right
hand in the lower beta band at electrode location CF1 only.

BCI-FES studies in stroke patients which rely on mea-
surement of movement-related cortical potentials (MRCP)
advocate the importance of precise matching of efferent and
afferent stimulus to promote recovery through a Hebbian type
learning mechanism (Mrachacz-Kersting et al 2012, 2016). In
a study by Mrachacz-Kersting er al (2016) only patients
receiving a single pulse stimulus precisely matched with the
maximum negativity of MRCP improved their speed of
walking. Interestingly, although patients practiced isolated
ballistic foot dorsiflexion it translated to the improvement of
walking. In our study, there was no precise matching between
MA and FES, yet neurological recovery translated, to some
extent, to a functional recovery. We hypothesise that in our
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case, MA mediated neuromodulation pre-conditioned the
sensory-motor cortex activity. This potentially amplified the
effect of a subsequent FES. In addition, patients were
instructed to carry on with MA during FES. It is of interest
that it seemed less relevant to match MA motor task (hand
waving) with grasp sequence produced by FES, probably
because both waving and grasp activate the motor cortex
of hand.

It has been documented in literature that following spinal
cord injury, the cortex undergoes reorganisation both early
post injury and in a later chronic phase. Stronger cortical
activity in parietal regions following injury, that shifts
towards the central region upon recovery, as seen in BCI-FES
group, has been previously reported in patients with spinal
cord injury, where the restoration of cortical activity was
related to a functional recovery (Green et al 1998). This result
is further supported by a fMRI single case study (Mukaino
et al 2014) which showed an initial diffuse blood oxygenation
level and the lateralisation of this activity following BCI-FES
training.

SSEP was not assessed in BCI-FES studies in stroke
patients probably because they have injury to the brain so
assessing the integrity of neural pathways was less relevant.
In SCI patients however, this is the useful additional indicator
of recovery. Although it measures the recovery of the sensory
pathways in both peripheral and central nervous system, due
to the nature of the injury in SCI patients, it is assumed that
SSEP mostly measures a recovery in the spinal cord. In BCI-
FES patients group, SSEP following recovery showed re-
appearance of N20 peak and the reduced latency of the
existing peaks. Though this was primarily noticed in BCI-
FES group, due to the small number of patients, a statistical
comparison between groups was not performed Curt and
Dietz (1999). showed a relation between SSEP of the lower
limbs and the recovery of walking which should have an
equivalent effect in the recovery of the upper limbs.

Improvement in ROM was noticed in both groups, but
due to the small number of patients available for ROM test
results are inconclusive. This functional assessment 1is
sometimes also used in studies in stroke patients (Kim
et al 2015), though they more often use Action Research Arm
Test and Fugl-Meyer Assessment of Motor Recovery (Li
et al 2014, Kim et al 2015) which assess the activities of daily
living. We have not used any test which assesses the activities
of daily living because SCI patients in the current study had
more severe motor deficits than stroke patients and were not
able to perform any of these tasks; therefore an individual
muscle strength was measured. MMT is not a straightforward
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measure as each muscle is tested individually. In this study
we analysed the improvement in MMT score of the group of
functionally related muscles, due to the small number of
participants and because the statistical analysis of each
separate muscles is not a good indicator of related functional
improvement. While both groups initially had similar MMT
scores, a statistically significant improvement was noticed in
BCI-FES group for all muscles groups and for both arms/
hands. On the contrary, in FES group strength has been
improved only in muscles controlling shoulder and in flexor
muscles of the right hand. While we expect that both therapies
primarily affect the forearm and hand, it is possible that motor
activation through MA and a sensory feedback through FES
actually have an effect on the wider areas of the sensory-
motor corteX, thus indirectly improving the voluntary control
of the whole arm.

Neurological recovery normally precedes functional
recovery. Patients in this study received 20 therapy sessions
and had the last assessment shortly following the last therapy
sessions. There are two possible scenarios of a long-term
outcome: first one is that FES patients may reach the same
level of neurological recovery as BCI-FES patients but after a
prolonged period of time. The second one is that BCI-FES
group may show an even larger long-term functional recovery
than FES group due to a better neurological recovery. It
would be necessary to follow up patients for a prolonged
period of time (e.g. up to 6 months) to establish whether those
who showed better neurological recovery would also achieve
better functional recovery. Therefore it would be necessary to
organise studies on the larger number of patients to establish a
clear correlation between a neurological recovery, as mea-
sured by a cortical activity, and a functional recovery. Due to
the low incidence of SCI this would require either a long term
or a multi-centre trial.

We noticed strong ERD in the theta band in both groups
prior to the therapy, which has been subsequently reduced in
BCI-FES group only. In our previous study in which we
compared ERD spatial cortical maps during imagined
movement between spinal cord injured patients with and
without chronic central neuropathic pain (Vuckovic
et al 2014), we found that patients with pain had strong theta
ERD. This type of pain is a secondary consequence of an
injury that can occur months or even years after the injury and
is related to the overactive cortex and thalamo-cortical dys-
rhythmia (Sarnthein and Jeanmonod 2008). Thus neurological
recovery induced by BCI-FES therapy might potentially
prevent secondary consequences of spinal cord injury such as
chronic pain and spasticity (Pikov 2002). Although these
complications are caused by disuse plasticity in the spinal
cord, they also reflect themselves in the cortical activity
(Wrigley et al 2009, Vuckovic et al 2014). In the future in
would be useful having BCI-FES studies which also involve
these symptoms in the outcome measures and follow which
percentage of patients in a treatment and a control group,
treated early post-injury, develop these symptoms in a chronic
stage.
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5. Conclusions

This randomised pilot study indicates that BCI-FES therapy
of the hand in sub-acute tetraplegic patients has a positive
effect on neurological and to some extent on functional
recovery. The effect of BCI-FES was larger than the effect of
control FES therapy. In summary, the study demonstrates the
positive effect of BCI-FES as a neurorchabilitation therapy
following spinal cord injury. Larger, possibly multicentre,
trials are required to assess the effect of the therapy on
functional recovery on a larger number of patients and over a
prolonged period of time.
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