8 research outputs found

    Direct Potable Reuse of Wastewater

    Get PDF
    Water is essential to our societies and mankind. Currently, 844 million people across the globe lack access to potable water. By 2025, it is projected that half of the world population will be in a region of water stress.5 The water crisis is often thought of as a problem limited to places that have always struggled to have clean water, but it is now affecting new areas such as the southwest United States. With increasing population demands and drought, the feasibility of direct potable reuse (DPR) of wastewater is being considered. According to an EPA report in 2017, there are only four operational or planned DPR facilities in the United States. Of these, the El Paso Advanced Water Purification Facility will be the only one to send treated water directly into the distribution system without blending or continuation onto conventional treatment.1 As demand and water costs increase, we believe that the implementation of our DPR process for wastewater effluent is a viable option for many communities. The primary contaminants in wastewater treatment plant (WWTP) effluent that must be targeted for potable reuse are organics, bacteria, pathogens, viruses, and suspended and dissolved solids. Our process consists of ozone treatment, granular activated carbon (GAC) treatment, a cartridge particulate filter, ultrafiltration, reverse osmosis, and ultraviolet disinfection. Ozone is used to kill microorganisms in the secondary WWTP effluent before it enters the rest of the system to prevent bio-fouling on the equipment. GAC is used to remove the majority of organic contaminants. A cartridge filter is between the GAC and ultrafiltration (UF) to prevent plugging of the UF membrane. Ultrafiltration is used as pretreatment for the reverse osmosis unit. UF was chosen for its ability to remove pathogens and viruses. Reverse osmosis will remove dissolved solids, a necessary step for the contaminated water to become potable. The final step is disinfection by ultraviolet treatment to ensure no live pathogens reach distribution. Experiments were performed to determine if this combination of steps could effectively treat contaminated water. The necessary treatment must be able to reduce the total dissolved solids (TDS) level from 1,200 parts per million to less than 500 parts per million and reduce TOC from 10 parts per million to less than 0.1 parts per million. Fecal bacteria such as coliform must not be present for the water to be considered potable.15 A full size plant was designed based on the needs of a community of 5,000, using an average water demand of 100 gallons per person per day.18 The Poo Pig Sooie team has found Silver City, New Mexico (population ≈ 10,000) to be an ideal city for implementation of the DPR process. This plant would be able to supplement 50% of the potable water (equivalent to a city with a population of 5,000) demands of the city for as little as $1.27 per 1,000 gallons

    Direct Potable Reuse of Wastewater

    Get PDF
    Water is essential to our societies and mankind. Currently, 844 million people across the globe lack access to potable water. By 2025, it is projected that half of the world population will be in a region of water stress. The water crisis is often thought of as a problem limited to places that have always struggled to have clean water, but it is now affecting new areas such as the southwest United States. With increasing population demands and drought, the feasibility of direct potable reuse (DPR) of wastewater is being considered. According to an EPA report in 2017, there are only four operational or planned DPR facilities in the United States. Of these, the El Paso Advanced Water Purification Facility will be the only one to send treated water directly into the distribution system without blending or continuation onto conventional treatment. As demand and water costs increase, we believe that the implementation of our DPR process for wastewater effluent is a viable option for many communities. The primary contaminants in wastewater treatment plant (WWTP) effluent that must be targeted for potable reuse are organics, bacteria, pathogens, viruses, and suspended and dissolved solids. Our process consists of ozone treatment, granular activated carbon (GAC) treatment, a cartridge particulate filter, ultrafiltration, reverse osmosis, and ultraviolet disinfection. Ozone is used to kill microorganisms in the secondary WWTP effluent before it enters the rest of the system to prevent bio-fouling on the equipment. GAC is used to remove the majority of organic contaminants. A cartridge filter is between the GAC and ultrafiltration (UF) to prevent plugging of the UF membrane. Ultrafiltration is used as pretreatment for the reverse osmosis unit. UF was chosen for its ability to remove pathogens and viruses. Reverse osmosis will remove dissolved solids, a necessary step for the contaminated water to become potable. The final step is disinfection by ultraviolet treatment to ensure no live pathogens reach distribution. Experiments were performed to determine if this combination of steps could effectively treat contaminated water. The necessary treatment must be able to reduce the total dissolved solids (TDS) level from 1,200 parts per million to less than 500 parts per million and reduce TOC from 10 parts per million to less than 0.1 parts per million. Fecal bacteria such as coliform must not be present for the water to be considered potable. A full size plant was designed based on the needs of a community of 5,000, using an average water demand of 100 gallons per person per day. The Poo Pig Sooie team has found Silver City, New Mexico (population ≈ 10,000) to be an ideal city for implementation of the DPR process. This plant would be able to supplement 50% of the potable water (equivalent to a city with a population of 5,000) demands of the city for as little as $1.27 per 1,000 gallons

    Direct Potable Reuse of Wastewater

    Get PDF
    Water is essential to our societies and mankind. Currently, 844 million people across the globe lack access to potable water. By 2025, it is projected that half of the world population will be in a region of water stress.5 The water crisis is often thought of as a problem limited to places that have always struggled to have clean water, but it is now affecting new areas such as the southwest United States. With increasing population demands and drought, the feasibility of direct potable reuse (DPR) of wastewater is being considered. According to an EPA report in 2017, there are only four operational or planned DPR facilities in the United States. Of these, the El Paso Advanced Water Purification Facility will be the only one to send treated water directly into the distribution system without blending or continuation onto conventional treatment.1 As demand and water costs increase, we believe that the implementation of our DPR process for wastewater effluent is a viable option for many communities. The primary contaminants in wastewater treatment plant (WWTP) effluent that must be targeted for potable reuse are organics, bacteria, pathogens, viruses, and suspended and dissolved solids. Our process consists of ozone treatment, granular activated carbon (GAC) treatment, a cartridge particulate filter, ultrafiltration, reverse osmosis, and ultraviolet disinfection. Ozone is used to kill microorganisms in the secondary WWTP effluent before it enters the rest of the system to prevent bio-fouling on the equipment. GAC is used to remove the majority of organic contaminants. A cartridge filter is between the GAC and ultrafiltration (UF) to prevent plugging of the UF membrane. Ultrafiltration is used as pretreatment for the reverse osmosis unit. UF was chosen for its ability to remove pathogens and viruses. Reverse osmosis will remove dissolved solids, a necessary step for the contaminated water to become potable. The final step is disinfection by ultraviolet treatment to ensure no live pathogens reach distribution. Experiments were performed to determine if this combination of steps could effectively treat contaminated water. The necessary treatment must be able to reduce the total dissolved solids (TDS) level from 1,200 parts per million to less than 500 parts per million and reduce TOC from 10 parts per million to less than 0.1 parts per million. Fecal bacteria such as coliform must not be present for the water to be considered potable.15 A full size plant was designed based on the needs of a community of 5,000, using an average water demand of 100 gallons per person per day.18 The Poo Pig Sooie team has found Silver City, New Mexico (population ≈ 10,000) to be an ideal city for implementation of the DPR process. This plant would be able to supplement 50% of the potable water (equivalent to a city with a population of 5,000) demands of the city for as little as $1.27 per 1,000 gallons

    Identification of Hip BMD Loss and Fracture Risk Markers Through Population-Based Serum Proteomics.

    No full text
    Serum proteomics analysis may lead to the discovery of novel osteoporosis biomarkers. The Osteoporotic Fractures in Men (MrOS) study comprises men ≥65 years old in the US who have had repeated BMD measures and have been followed for incident fracture. High-throughput quantitative proteomic analysis was performed on baseline fasting serum samples from non-Hispanic white men using a multidimensional approach coupling liquid chromatography, ion-mobility separation, and mass spectrometry (LC-IMS-MS). We followed the participants for a mean of 4.6 years for changes in femoral neck bone mineral density (BMD) and for incident hip fracture. Change in BMD was determined from mixed effects regression models taking age and weight into account. Participants were categorized into three groups: BMD maintenance (no decline; estimated change ≥0 g/cm2 , n = 453); expected loss (estimated change 0 to 1 SD below the estimated mean change, -0.034 g/cm2 for femoral neck, n = 1184); and accelerated loss (estimated change ≥1 SD below mean change, n = 237). Differential abundance values of 3946 peptides were summarized by meta-analysis to determine differential abundance of each of 339 corresponding proteins for accelerated BMD loss versus maintenance. Using this meta-analytic standardized fold change at cutoffs of ≥1.1 or ≤0.9 (p < 0.10), 20 proteins were associated with accelerated BMD loss. Associations of those 20 proteins with incident hip fracture were tested using Cox proportional hazards models with age and BMI adjustment in 2473 men. Five proteins were associated with incident hip fracture (HR between 1.29 and 1.41 per SD increase in estimated protein abundance). Some proteins have been previously associated with fracture risk (eg, CD14 and SHBG), whereas others have roles in cellular senescence and aging (B2MG and TIMP1) and complement activation and innate immunity (CO7, CO9, CFAD). These findings may inform development of biomarkers for future research in bone biology and fracture prediction. © 2017 American Society for Bone and Mineral Research
    corecore