13 research outputs found

    Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function

    Get PDF
    PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia

    Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume?

    No full text
    Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in grey matter volume have been extensively studied, less has been done using newer morphological indices such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indices probably reflecting specific histological changes occurring during aging

    Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition

    No full text
    Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32), encoded by PPP1R1B, is a pivotal integrator of information in dopaminoceptive neurons, regulating the response to neuroleptics, psychotomimetics, and drugs of abuse, and affecting striatal function and plasticity. Despite extensive preclinical work, there are almost no data on DARPP-32 function in humans. Here, we identify, through resequencing in 298 chromosomes, a frequent PPP1R1B haplotype predicting mRNA expression of PPP1R1B isoforms in postmortem human brain. This haplotype was associated with enhanced performance on several cognitive tests that depend on frontostriatal function. Multimodal imaging of healthy subjects revealed an impact of the haplotype on neostriatal volume, activation, and the functional connectivity of the prefrontal cortex. The haplotype was associated with the risk for schizophrenia in 1 family-based association analysis. Our convergent results identify a prefrontal-neostriatal system affected by variation in PPP1R1B and suggest that DARPP-32 plays a pivotal role in cognitive function and possibly in the pathogenesis of schizophrenia

    Handedness, heritability, neurocognition and brain asymmetry in schizophrenia

    No full text
    Higher rates of non-right-handedness (i.e. left- and mixed-handedness) have been reported in schizophrenia and have been a centrepiece for theories of anomalous lateralization in this disorder. We investigated whether non-right-handedness is (i) more prevalent in patients as compared with unaffected siblings and healthy unrelated control participants; (ii) familial; (iii) associated with disproportionately poorer neurocognition; and (iv) associated with grey matter volume asymmetries. We examined 1445 participants (375 patients with schizophrenia, 502 unaffected siblings and 568 unrelated controls) using the Edinburgh Handedness Inventory, a battery of neuropsychological tasks and structural magnetic resonance imaging data. Patients displayed a leftward shift in Edinburgh Handedness Inventory laterality quotient scores as compared with both their unaffected siblings and unrelated controls, but this finding disappeared when sex was added to the model. Moreover, there was no evidence of increased familial risk for non-right-handedness. Non-right-handedness was not associated with disproportionate neurocognitive disadvantage or with grey matter volume asymmetries in the frontal pole, lateral occipital pole or temporal pole. Non-right-handedness was associated with a significant reduction in left asymmetry in the superior temporal gyrus in both patients and controls. Our data neither provide strong support for ‘atypical’ handedness as a schizophrenia risk-associated heritable phenotype nor that it is associated with poorer neurocognition or anomalous cerebral asymmetries
    corecore