30 research outputs found

    Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds

    Get PDF
    As the global population grows more of our fish and seafood are being farmed. Fish are the main dietary source of the omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, but these cannot be produced in sufficient quantities as are now required for human health. Farmed fish have traditionally been fed a diet consisting of fishmeal and fish oil, rich in n-3 LC-PUFA. However, the increase in global aquaculture production has resulted in these finite and limited marine ingredients being replaced with sustainable alternatives of terrestrial origin that are devoid of n-3 LC-PUFA. Consequently, the nutritional value of the final product has been partially compromised with EPA and DHA levels both falling. Recent calls from the salmon industry for new sources of n-3 LC-PUFA have received significant commercial interest. Thus, this review explores the technologies being applied to producede novon-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet

    Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/AMP-activated protein kinase pathway in juvenile Pacific white shrimp

    Get PDF
    The present study evaluated the effects of dietary zinc level on growth performance, serum and hepatopancreas metabolites, and expression of genes involved in lipid and energy metabolism, and the signal pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different zinc levels: 46.4 (basal diet), 77.2, 87.0, 117.1, and 136.8 mg kg-1, respectively. The results indicated that shrimp fed the diet containing zinc at 117.1 mg kg-1 had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary zinc level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malonaldehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote triglyceride breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkβ, ampk, cd36, mcd, cpt1 involved in Zn-induced lipid catabolism were up-regulated, and expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11, zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of zinc, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei

    A transgenic Camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice

    Get PDF
    Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. Results: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36–38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator–activated receptor α (Ppara), and peroxisome proliferator–activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. Conclusions: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial

    Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic:linoleic ratio in Atlantic salmon (Salmo salar)

    Get PDF
    Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), from a-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA, and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5.9, 4.4 and 2.8 mg per g fish and that of n-6 LC-PUFA was 0.2, 0.5 and 1.4 mg per g of fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27.4 to 2.0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced around 28 μg n-3 LC-PUFA per g of fish per day, with a DHA:EPA ratio of 3.4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production, and EPA:ARA and DHA:ARA ratios, and increased n-6 LC-PUFA production, and DHA:EPA ratio

    Tolerance and dose-response assessment of subchronic dietary ethoxyquin exposure in Atlantic salmon (Salmo salar L.)

    Get PDF
    Ethoxyquin (EQ; 6-Ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline) has been used as an antioxidant in feed components for pets, livestock and aquaculture. However, possible risks of EQ used in aquafeed for fish health have not yet been characterized. The present study investigated the toxicity and dose-response of subchronic dietary EQ exposure at doses ranging from 41 to 9666 mg EQ/kg feed in Atlantic salmon (Salmo salar L.). Feed at concentrations higher than 1173 mg EQ/kg were rejected by the fish, resulting in reduced feed intake and growth performance. No mortality was observed in fish exposed to any of the doses. A multi-omic screening of metabolome and proteome in salmon liver indicated an effect of dietary EQ on bioenergetics pathways and hepatic redox homeostasis in fish fed concentrations above 119 mg EQ/kg feed. Increased energy expenditure associated with an upregulation of hepatic fatty acid â-oxidation and induction and carbohydrate catabolic pathways resulted in a dose-dependent depletion of intracytoplasmic lipid vacuoles in liver histological sections, decreasing whole body lipid levels and altered purine/pyrimidine metabolism. Increased GSH and TBARS in the liver indicated a state of oxidative stress, which was associated with activation of the NRF2-mediated oxidative stress response and glutathione-mediated detoxification processes. However, no oxidative DNA damage was observed. As manifestation of altered energy metabolism, the depletion of liver intracytoplasmic lipid vacuoles was considered the critical endpoint for benchmark dose assessment, and a BMDL10 of 243 mg EQ/kg feed was derived as a safe upper limit of EQ exposure in Atlantic salmon

    Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level

    Get PDF
    The long-chain (≥C20) polyunsaturated fatty acid biosynthesis capacity of fish varies among species, with trophic level hypothesised as a major factor. The biosynthesis capacity is largely dependent upon the presence of functionally diversified fatty acyl desaturase 2 (Fads2) enzymes, since many teleosts have lost the gene encoding a Δ5 desaturase (Fads1). The present study aimed to characterise Fads2 from four teleosts occupying different trophic levels, namely Sarpa salpa, Chelon labrosus, Pegusa lascaris and Atherina presbyter, which were selected based on available data on functions of Fads2 from closely related species. Therefore, we had insight into the variability of Fads2 within the same phylogenetic group. Our results showed that Fads2 from S. salpa and C. labrosus were both Δ6 desaturases with further Δ8 activity while P. lascaris and A. presbyter Fads2 showed Δ4 activity. Fads2 activities of herbivorous S. salpa are consistent with those reported for carnivorous Sparidae species. The results suggested that trophic level might not directly drive diversification of teleost Fads2 as initially hypothesised, and other factors such as the species’ phylogeny appeared to be more influential. In agreement, Fads2 activities from P. lascaris and A. presbyter were similar to their corresponding phylogenetic counterparts Solea senegalensis and Chirostoma estor

    Supplementation of vitamin E and C prevent granulomatosis in meagre larvae

    Get PDF
    Systemic granulomatosis has already been reported in meagre larvae with an adequate feeding protocol and enrichment media preventing its appearance in the first weeks of life. Afterwards, the control of this disease could be prevented through nutritional components of the inert food, being the antioxidants the key to success. For this reason, in the present study, meagre larvae were reared from 30 days post hatching (dph) with five isonitrogenous and isolipidic experimental microdiets with different levels of vitamin E and C: C- (40 mg kg-1 E, 100 mg kg-1 C), C+ (400 mg kg-1 E, 1,000 mg kg-1 C), Krill (400 mg kg-1 E, 1,000 mg kg-1 C and substitution of fish oil by krill oil), EC (200 mg kg-1 E, 500 mg kg-1 C) and EECC (800 mg kg-1 E, 2,000 mg kg-1 C). Prior to this, larvae were co-fed with rotifers and Artemia following a protocol which prevented the appearance of granulomas, as previously demonstrated. The substitution of fish oil by krill oil significantly increased levels of eicosapentaenoic acid (EPA, 16.6 %) and docosahexaenoic acid (DHA, 17.6 %) in meagre, consequently increasing the peroxidation index, which in turn translated into a higher incidence of granulomas. Although even low levels of vitamin E and C (40 mg kg-1 E, 100 mg kg-1 C; C-) allowed the adequate growth of larvae, these levels were not enough to prevent the appearance of granulomas, requiring superior levels of both antioxidant vitamins (800 mg kg-1 E and 2,000 mg kg-1 C) to mitigate systemic granulomatosis. This mitigation was simultaneous with the reduction of thiobarbituric acid reactive substances TBARs content in larvae, which were highly correlated with the appearance of granulomas (R2=0.892, y=0.0446x+0.0756). A strong negative correlation was observed between the dietary levels of vitamin E (y = -0.0098x + 11.174, R2 = 0.8766, p value = 0.019, r = -0.93) and vitamin C (y = -0.0022x + 6.4777, R2 = 0.9278, p value = 0.003, r = -0.96) and the percentage of larvae with granulomas. The results showed that the occurrence of systemic granulomatosis seems to be associated to the larvae peroxidation status, so that high dietary levels of vitamin E and C (800 and 2,000 mg kg-1, respectively; Diet EECC), reduced lipid peroxidation and completely prevented the appearance of granulomas in meagre larvae at 44 dph

    Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, Portunus trituberculatus

    Get PDF
    The regulation of lipogenesis and lipolysis mechanisms related to consumption of lipid has not been studied in swimming crab. The aims of present study were to evaluate the effects of dietary lipid levels on growth, enzymes activities, and expression of genes of lipid metabolism in hepatopancreas of juvenile swimming crab. Three isonitrogenous diets were formulated to contain crude lipid levels at 5.8 %, 9.9 % and 15.1 %, respectively. Crabs fed the diet containing 15.1 % lipid had significantly lower weight gain, specific growth rate and survival, and higher feed conversion ratio than those fed the 5.8 % and 9.9 % lipid diets. Crabs fed 5.8 % lipid had lower malondialdehyde concentrations in the hemolymph and hepatopancreas than those fed the other diets. Highest glutathione peroxidase in hemolymph and superoxide dismutase in hepatopancreas were observed in crabs fed 5.8 % lipid. The lowest fatty acid synthase and glucose 6-phosphate dehydrogenase activities in hepatopancreas were observed in crabs fed 15.1 % lipid, whereas crabs fed 5.8 % lipid had lower carnitine palmitoyltransferase-1 activity than those fed the other diets. Crabs fed 15.1 % lipid showed lower hepatopancreas expression of genes involved in LC-PUFA biosynthesis, lipoprotein clearance, fatty acid uptake, fatty acid oxidation, lipid anabolism and lipid catabolism than those fed the other diets, whereas expression of some genes of lipoprotein assembly and fatty acid oxidation were up-regulated compared with crabs fed 5.8 % lipid. Overall, high dietary lipid level can inhibit growth, reduce feed utilization and reduce antioxidant enzyme activities. Moreover, dietary lipid influenced enzyme activities and gene expression involved in lipid metabolism of juvenile swimming crab

    Agriculture can help aquaculture become greener

    Get PDF
    Aquaculture, the farming of fish and seafood, is recognized as a highly efficient system for producing protein for human consumption. In contrast, many terrestrial animal protein production systems are inefficient, impacting land use and exacerbating climate change. Humankind needs to adopt a more plant-centric diet, the only exception being fish consumed as both a source of protein and essential dietary nutrients such as omega-3 fatty acids. Here we consider the implications of such a transition, and the challenges that aquaculture must overcome to increase productivity within planetary boundaries. We consider how agriculture, specifically crops, can provide solutions for aquaculture, especially the sectors that are dependent on marine ingredients. For example, agriculture can provide experience with managing monocultures and new technologies such as genetically modified crops tailored specifically for use in aquaculture. We propose that a closer connection between agriculture and aquaculture will create a resilient food system capable of meeting increasing dietary and nutritional demands without exhausting planetary resources
    corecore