2,573 research outputs found
Equity-Efficiency Optimizing Resource Allocation: The Role of Time Preferences in a Repeated Irrigation Game
We study repeated water allocation decisions among small scale irrigation users in Tanzania. In a treatment replicating water scarcity conditions, convexities in production make that substantial efficiency gains can be obtained by deviating from equal sharing, leading to an equity–efficiency trade-off. In a repeated game setting, it becomes possible to reconcile efficiency with equity by rotating the person who receives the largest share, but such a strategy requires a longer run perspective. Correlating experimental data from an irrigation game with individual time preference data, we find that less patient irrigators are less likely to use a rotation strategy
The Aggregate Consequences of Default Risk: Evidence from Firm-level Data
This paper studies the implications of perceived default risk for aggregate output and productivity. Using a model of credit contracts with moral hazard, we show that a firm’s probability of default is a sufficient statistic for capital allocation. The t
Self-consistent-field calculations of core excited states
The accuracy of core excitation energies and core electron binding energies computed within a Δself-consistent-field framework is assessed. The variational collapse of the core excited state is prevented by maintaining a singly occupied core orbital using an overlap criterion called the maximum overlap method. When applied to a wide range of small organic molecules, the resulting core excitation energies are not systematically underestimated as observed in time-dependent density functional theory and agree well with experiment. The accuracy of this approach for core excited states is illustrated by the calculation of the pre-edge features in x-ray absorption spectra of plastocyanin, which shows that accurate results can be achieved with Δself-consistent-field calculations when used in conjunction with uncontracted basis functions.N.A.B. is grateful to the ANU for a 2007 Visiting
Fellowship
The effects of encapsulation on damage to molecules by electron radiation
Encapsulation of materials imaged by high resolution transmission electron microscopy presents a promising route to the reduction of sample degradation, both independently and in combination with other traditional solutions to controlling radiation damage. In bulk crystals, the main effect of encapsulation (or coating) is the elimination of diffusion routes of beam-induced radical species, enhancing recombination rates and acting to limit overall damage. Moving from bulk to low dimensional materials has significant effects on the nature of damage under the electron beam. We consider the major changes in mechanisms of damage of low dimensional materials by separating the effects of dimensional reduction from the effects of encapsulation. An effect of confinement is discussed using a model example of coronene molecules encapsulated inside single walled carbon nanotubes as determined from molecular dynamics simulations calculating the threshold energy required for hydrogen atom dissociation. The same model system is used to estimate the rate at which the nanotube can dissipate excess thermal energy above room temperature by acting as a thermal sink
Warfare, Fiscal Capacity, and Performance
We exploit differences in casualties sustained in pre-modern wars to estimate the impact of fiscal capacity on economic performance. In the past, states fought different amounts of external conflicts, of various lengths and magnitudes. To raise the revenues to wage wars, states made fiscal innovations, which persisted and helped to shape current fiscal institutions. Economic historians claim that greater fiscal capacity was the key long-run institutional change brought about by historical conflicts. Using casualties sustained in pre-modern wars to instrument for current fiscal institutions, we estimate substantial impacts of fiscal capacity on GDP per worker. The results are robust to a broad range of specifications, controls, and sub-samples
Improving the predictive quality of time‐dependent density functional theory calculations of the X‐ray emission spectroscopy of organic molecules
The simulation of x-ray emission spectra of organic molecules using time-dependent density functional theory (TDDFT) is explored. TDDFT calculations using standard hybrid exchange-correlation functionals in conjunction with large basis sets can predict accurate X-ray emission spectra provided an energy shift is applied to align the spectra with experiment. The relaxation of the orbitals in the intermediate state is an important factor, and neglect of this relaxation leads to considerably poorer predicted spectra. A short-range corrected functional is found to give emission energies that required a relatively small energy shift to align with experiment. However, increasing the amount of Hartree-Fock exchange in this functional to remove the need for any energy shift led to a deterioration in the quality of the calculated spectral profile. To predict accurate spectra without reference to experimental measurements, we use the CAM-B3LYP functional with the energy scale determined with reference to a ∆self-consistent field (SCF) calculation for the highest energy emission transition
Does the Supreme Court Follow the Economic Returns? A Response to A Macrotheory of the Court
Today, there is a widespread idea that parents need to learn how to carry out their roles as parents. Practices of parental learning operate throughout society. This article deals with one particular practice of parental learning, namely nanny TV, and the way in which ideal parents are constructed through such programmes. The point of departure is SOS family, a series broadcast on Swedish television in 2008. Proceeding from the theorising of governmentality developed in the wake of the work of Michel Foucault, we analyse the parental ideals conveyed in the series, as an example of the way parents are constituted as subjects in the ‘advanced liberal society’ of today. The ideal parent is a subject who, guided by the coach, is constantly endeavouring to achieve a makeover. The objective of this endeavour, however, is self-control, whereby the parents will in the end become their own coaches.
Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale
Metallic bonds remain one of the most important and least understood of the chemical bonds. In this study, we
generated Re2 molecules in which the Re–Re core is unsupported by ligands. Real-time imaging of the atomic-scale
dynamics of Re2 adsorbed on a graphitic lattice allows direct measurement of Re–Re bond lengths for individual
molecules that changes in discrete steps correlating with bond order from one to four. Direct imaging of
the Re–Re bond breaking process reveals a new bonding state with the bond order less than one and a high-amplitude
vibrational stretch, preceding the bond dissociation. The methodology, based on aberration-corrected
transmission electron microscopy imaging, is shown to be a powerful analytical tool for the investigation of dynamics
of metallic bonding at the atomic level
- …