52 research outputs found

    Targeting Galectins With Glycomimetics

    Get PDF
    Among glycan-binding proteins, galectins, beta-galactoside-binding lectins, exhibit relevant biological roles and are implicated in many diseases, such as cancer and inflammation. Their involvement in crucial pathologies makes them interesting targets for drug discovery. In this review, we gather the last approaches toward the specific design of glycomimetics as potential drugs against galectins. Different approaches, either using specific glycomimetic molecules decorated with key functional groups or employing multivalent presentations of lactose and N-acetyl lactosamine analogs, have provided promising results for binding and modulating different galectins. The review highlights the results obtained with these approximations, from the employment of S-glycosyl compounds to peptidomimetics and multivalent glycopolymers, mostly employed to recognize and/or detecthGal-1 andhGal-3.We thank the European Research Council (RECGLYCANMR, Advanced Grant no. 788143), ISCIII (Grant PRB3 IPT17/0019 to AG), and the Agencia Estatal de Investigacion (Spain) for Grants RTI2018-094751-B-C21, Ramon y Cajal contract to AA and the Severo Ochoa Excellence Accreditation (SEV-2016-0644)

    Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide

    Get PDF
    Acyl group migration is a fundamental phenomenon in carbohydrate chemistry, recently shown to take place also between two non-adjacent hydroxyl groups, across the glycosidic bond, in a beta-(1 -> 4)-linked mannan trisaccharide model compound. With the central mannoside unit containing acetyl groups at the O2 and O3 positions, the O2-acetyl was in the earlier study shown to migrate to O6 of the reducing end. Potential implications of the general acyl migration process on cell signaling events and plant growth in nature are intriguing open questions. In the present work, migration kinetics in this original trisaccharide model system were studied in more detail together with potential interactions of the model compound and the migration products with DC-SIGN lectin. Furthermore, we demonstrate here for the first time that similar migration may also take place in native polysaccharides, here represented by galactoglucomannan from Norway spruce.The authors acknowledge the European Research Council for financial support (ERC-2017-AdG, project number 788143-RECGLYCA NMR) and the Agencia Estatal de Investigacion (Spain) for project RTI2018-094751-B-C21 (to JJB

    Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1

    Get PDF
    The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.This research was supported by the European Research Council (ERC-2017-AdG, project 788143-RECGLYCANMR to J.J.-B.), Agencia Estatal Investigacion of Spain (AEI; grant RTI2018-094751-B-C21 to J.J.-B., RTI2018-099592-B-C22 to G.J.O, RTI2018-101269-B-I00 to O. M., and Ramon y Cajal Contract to A. A.) and the Severo Ochoa Excellence Accreditation (SEV-2016-0644 to J.J.-B.). We also thank Instituto de Salud Carlos III of Spain, ISCIII (grant PRB3 IPT17/0019 to A. G.) and the Mizutani Foundation for Glycoscience (grant 200077 to G.J.O.)

    Intensive insulin therapy increases glutathione synthesis rate in surgical ICU patients with stress hyperglycemia

    Get PDF
    OBJECTIVE: The glutathione system plays an essential role in antioxidant defense after surgery. We assessed the effects of intensive insulin treatment (IIT) on glutathione synthesis rate and redox balance in cancer patients, who had developed stress hyperglycemia after major surgery. METHODS: We evaluated 10 non-diabetic cancer patients the day after radical abdominal surgery combined with intra-operative radiation therapy. In each patient, a 24-hr period of IIT, aimed at tight euglycemic control, was preceded, or followed, by a 24-hr period of conventional insulin treatment (CIT) (control regimen). Insulin was administered for 24 hours, during total parenteral nutrition, at a dosage to maintain a moderate hyperglycemia in CIT, and normoglycemic blood glucose levels in IIT (9.3\ub10.5 vs 6.5\ub10.3 mmol/L respectively, P<0.001; coefficient of variation, 9.7\ub11.4 and 10.5\ub11.1%, P = 0.43). No hypoglycemia (i.e., blood glucose < 3.9 mmol/L) was observed in any of the patients. Insulin treatments were performed on the first and second day after surgery, in randomized order, according to a crossover experimental design. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) and erythrocyte glutathione synthesis rates (EGSR), measured by primed-constant infusion of L-[2H2]cysteine, were assessed at the end of each 24-hr period of either IIT or CIT. RESULTS: Compared to CIT, IIT was associated with higher EGSR (2.70\ub10.51 versus 1.18\ub10.29 mmol/L/day, p = 0.01) and lower (p = 0.04) plasma TBARS concentrations (2.2\ub10.2 versus 2.9\ub10.4 nmol/L). CONCLUSIONS: In patients developing stress hyperglycemia after major surgery, IIT, in absence of hypoglycemia, stimulates erythrocyte glutathione synthesis, while decreasing oxidative stress

    Minimizing the entropy penalty for ligand binding: lessons from the molecular recognition of the histo blood-group antigens by human galectin-3

    Get PDF
    6 p.-5 fig.-2 tab.Ligand conformational entropy plays an important role in carbohydrate recognition events. Glycans are characterized by intrinsic flexibility around the glycosidic linkages, thus in most cases, loss of conformational entropy of the sugar upon complex formation strongly affects the entropy of the binding process. By employing a multidisciplinary approach combining structural, conformational, binding energy, and kinetic information, we investigated the role of conformational entropy in the recognition of the histo blood‐group antigens A and B by human galectin‐3, a lectin of biomedical interest. We show that these rigid natural antigens are pre‐organized ligands for hGal‐3, and that restriction of the conformational flexibility by the branched fucose (Fuc) residue modulates the thermodynamics and kinetics of the binding process. These results highlight the importance of glycan flexibility and provide inspiration for the design of high‐affinity ligands as antagonists for lectins.We thank Agencia Estatal de Investigacion and ISCIII of Spain and the European Research Council for financial support.Peer reviewe

    Epidemiology of gastroenteropancreatic neuroendocrine neoplasms: a review and protocol presentation for bridging tumor registry data with the Italian association for neuroendocrine tumors (Itanet) national database

    Get PDF
    : Neuroendocrine neoplasms (NENs) are rare tumors with diverse clinical behaviors. Large databases like the Surveillance, Epidemiology, and End Results (SEER) program and national NEN registries have provided significant epidemiological knowledge, but they have limitations given the recent advancements in NEN diagnostics and treatments. For instance, newer imaging techniques and therapies have revolutionized NEN management, rendering older data less representative. Additionally, crucial parameters, like the Ki67 index, are missing from many databases. Acknowledging these gaps, the Italian Association for Neuroendocrine Tumors (Itanet) initiated a national multicenter prospective database in 2019, aiming to gather data on newly-diagnosed gastroenteropancreatic neuroendocrine (GEP) NENs. This observational study, coordinated by Itanet, includes patients from 37 Italian centers. The database, which is rigorously maintained and updated, focuses on diverse parameters including age, diagnostic techniques, tumor stage, treatments, and survival metrics. As of October 2023, data from 1,600 patients have been recorded, with an anticipation of reaching 3600 by the end of 2025. This study aims at understanding the epidemiology, clinical attributes, and treatment strategies for GEP-NENs in Italy, and to introduce the Itanet database project. Once comprehensive follow-up data will be acquired, the goal will be to discern predictors of treatment outcomes and disease prognosis. The Itanet database will offer an unparalleled, updated perspective on GEP-NENs, addressing the limitations of older databases and aiding in optimizing patient care. STUDY REGISTRATION: This protocol was registered in clinicaltriasl.gov (NCT04282083)

    An Integrated Approach for a Structural and Functional Evaluation of Biosimilars: Implications for Erythropoietin

    Get PDF
    BACKGROUND: Authorization to market a biosimilar product by the appropriate institutions is expected based on biosimilarity with its originator product. The analogy between the originator and its biosimilar(s) is assessed through safety, purity, and potency analyses. OBJECTIVE: In this study, we proposed a useful quality control system for rapid and economic primary screening of potential biosimilar drugs. For this purpose, chemical and functional characterization of the originator rhEPO alfa and two of its biosimilars was discussed. METHODS: Qualitative and quantitative analyses of the originator rhEPO alfa and its biosimilars were performed using reversed-phase high-performance liquid chromatography (RP-HPLC). The identification of proteins and the separation of isoforms were studied using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF–MS) and two-dimensional gel electrophoresis (2D-PAGE), respectively. Furthermore, the biological activity of these drugs was measured both in vitro, evaluating the TF-1 cell proliferation rate, and in vivo, using the innovative experimental animal model of the zebrafish embryos. RESULTS: Chemical analyses showed that the quantitative concentrations of rhEPO alfa were in agreement with the labeled claims by the corresponding manufacturers. The qualitative analyses performed demonstrated that the three drugs were pure and that they had the same amino acid sequence. Chemical differences were found only at the level of isoforms containing N-glycosylation; however, functional in vitro and in vivo studies did not show any significant differences from a biosimilar point of view. CONCLUSION: These rapid and economic structural and functional analyses were effective in the evaluation of the biosimilarity between the originator rhEPO alfa and the biosimilars analyzed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40259-015-0136-3) contains supplementary material, which is available to authorized users

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    Full text link
    Background COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. Methods OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. Findings At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [ 50 center dot 7%] of 1902 patients with sex data were female and 938 [49 center dot 3%] were male). Overall, 317 (16 center dot 6%; 95% CI 14 center dot 8-18 center dot 5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the prevaccination phase (191 [19 center dot 1%; 95% CI 16 center dot 4-22 center dot 0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16 center dot 8%; 13 center dot 8- 20 center dot 3] of 653 patients, p=0 center dot 24), but significantly lower in the omicron phase (16 [6 center dot 2%; 3 center dot 5-10 center dot 2] of 256 patients, p<0 center dot 0001). In the alpha- delta phase, 84 (18 center dot 3%; 95% CI 14 center dot 6-22 center dot 7) of 458 unvaccinated patients and three (9 center dot 4%; 1 center dot 9- 27 center dot 3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7 center dot 4%; 95% CI 3 center dot 5-13 center dot 5] of 136 boosted patients, 18 [9 center dot 8%; 5 center dot 8-15 center dot 5] of 183 patients who had two vaccine doses vs 277 [ 18 center dot 5%; 16 center dot 5-20 center dot 9] of 1489 unvaccinated patients, p=0 center dot 0001), respiratory sequelae (six [4 center dot 4%; 1 center dot 6-9 center dot 6], 11 [6 center dot 0%; 3 center dot 0-10 center dot 7] vs 148 [9 center dot 9%; 8 center dot 4- 11 center dot 6], p= 0 center dot 030), and prolonged fatigue (three [2 center dot 2%; 0 center dot 1-6 center dot 4], ten [5 center dot 4%; 2 center dot 6-10 center dot 0] vs 115 [7 center dot 7%; 6 center dot 3-9 center dot 3], p=0 center dot 037)

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Lectin-Glycan Interactions: new NMR insights on the role of dynamics and presentation by using state-of-the-art NMR methodologies.

    No full text
    274 p.Glycans are ubiquitous in Nature. They are mainly found conjugated with other biomolecules giving rise to glycoproteins and glycolipids. Relevant biological events such as cell-cell, cell-matrix and host-pathogen interactions are orchestrated through the recognition of glycans by a group of specific proteins, called lectins. Several sub-families of lectins can be differentiated, being galectins, C-type lectins, and siglecs the most studied and suitable for biomedical applications.In this Thesis, different lectin-sugar systems have been selected and the fine details of their binding events have been decoded from the structural, conformational, and dynamic points of view. Particular attention to aspects such as conformational motions, multivalency, presentation, and the actual in-vitro or cell-like environment were the driving force behind this work.CICbioGUN
    corecore