767 research outputs found
A western diet increases serotonin availability in rat small intestine
Diet-induced obesity is associated with changes in gastrointestinal function and induction of a mild inflammatory state. Serotonin (5-HT) containing enterochromaffin (EC) cells within the intestine respond to nutrients and are altered by inflammation. Thus, our aim was to characterize the uptake and release of 5-HT from EC cells of the rat ileum in a physiologically relevant model of diet-induced obesity. In chow-fed (CF) and Western diet-fed (WD) rats electrochemical methods were used to measure compression evoked (peak) and steady state (SS) 5-HT levels with fluoxetine used to block the serotonin reuptake transporter (SERT). The levels ofmRNAfor tryptophan hydroxylase 1 (TPH1) and SERT were determined by quantitative PCR, while EC cell numbers were determined immunohistochemically. In WD rats, the levels of 5-HT were significantly increased (SS: 19.2±3.7 ±M; peak: 73.5±14.1 ±M) compared with CF rats (SS: 12.3±1.8 ±M; peak: 32.2±7.2 ±M), while SERTdependent uptake of 5-HT was reduced (peak WD: 108% of control versus peak CF: 212% control). In WD rats, there was a significant increase in TPH1 mRNA, a decrease in SERT mRNA and protein, and an increase in EC cells. In conclusion, our data show that foods typical of a Western diet are associated with an increased 5-HT availability in the rat ileum. Increased 5-HT availability is driven by the up-regulation of 5-HT synthesis genes, decreased re-uptake of 5-HT, and increased numbers and/or 5-HT content of EC cells which are likely to cause altered intestinal motility and sensation in vivo. Copyright © 2010 The Endocrine Society. All rights reserved
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Molecular motors robustly drive active gels to a critically connected state
Living systems often exhibit internal driving: active, molecular processes
drive nonequilibrium phenomena such as metabolism or migration. Active gels
constitute a fascinating class of internally driven matter, where molecular
motors exert localized stresses inside polymer networks. There is evidence that
network crosslinking is required to allow motors to induce macroscopic
contraction. Yet a quantitative understanding of how network connectivity
enables contraction is lacking. Here we show experimentally that myosin motors
contract crosslinked actin polymer networks to clusters with a scale-free size
distribution. This critical behavior occurs over an unexpectedly broad range of
crosslink concentrations. To understand this robustness, we develop a
quantitative model of contractile networks that takes into account network
restructuring: motors reduce connectivity by forcing crosslinks to unbind.
Paradoxically, to coordinate global contractions, motor activity should be low.
Otherwise, motors drive initially well-connected networks to a critical state
where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages,
8 figure
Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells
Endoplasmic reticulum (ER) stress-induced cellular dysfunction and death is associated with several human diseases. It has been widely reported that ER stress kills through activation of the intrinsic mitochondrial apoptotic pathway. Here we demonstrate that ER stress can also induce necroptosis, an receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL)-dependent form of necrosis. Remarkably, we observed that necroptosis induced by various ER stressors in L929 cells is dependent on tumor necrosis factor receptor 1 (TNFR1), but occurs independently of autocrine TNF or lymphotoxin α production. Moreover, we found that repression of either TNFR1, RIPK1 or MLKL did not protect the cells from death but instead allowed a switch to ER stress-induced apoptosis. Interestingly, while caspase inhibition was sufficient to protect TNFR1- or MLKL-deficient cells from death, rescue of the RIPK1-deficient cells additionally required RIPK3 depletion, indicating a switch back to RIPK3-dependent necroptosis in caspase-inhibited conditions. The finding that ER stress also induces necroptosis may open new therapeutic opportunities for the treatment of pathologies resulting from unresolved ER stress
Clinical trial simulation to evaluate power to compare the antiviral effectiveness of two hepatitis C protease inhibitors using nonlinear mixed effect models: a viral kinetic approach.
International audienceBACKGROUND: Models of hepatitis C virus (HCV) kinetics are increasingly used to estimate and to compare in vivo drug's antiviral effectiveness of new potent anti-HCV agents. Viral kinetic parameters can be estimated using non-linear mixed effect models (NLMEM). Here we aimed to evaluate the performance of this approach to precisely estimate the parameters and to evaluate the type I errors and the power of the Wald test to compare the antiviral effectiveness between two treatment groups when data are sparse and/or a large proportion of viral load (VL) are below the limit of detection (BLD). METHODS: We performed a clinical trial simulation assuming two treatment groups with different levels of antiviral effectiveness. We evaluated the precision and the accuracy of parameter estimates obtained on 500 replication of this trial using the stochastic approximation expectation-approximation algorithm which appropriately handles BLD data. Next we evaluated the type I error and the power of the Wald test to assess a difference of antiviral effectiveness between the two groups. Standard error of the parameters and Wald test property were evaluated according to the number of patients, the number of samples per patient and the expected difference in antiviral effectiveness. RESULTS: NLMEM provided precise and accurate estimates for both the fixed effects and the inter-individual variance parameters even with sparse data and large proportion of BLD data. However Wald test with small number of patients and lack of information due to BLD resulted in an inflation of the type I error as compared to the results obtained when no limit of detection of VL was considered. The corrected power of the test was very high and largely outperformed what can be obtained with empirical comparison of the mean VL decline using Wilcoxon test. CONCLUSION: This simulation study shows the benefit of viral kinetic models analyzed with NLMEM over empirical approaches used in most clinical studies. When designing a viral kinetic study, our results indicate that the enrollment of a large number of patients is to be preferred to small population sample with frequent assessments of VL
Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development.
Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.This is the author's accepted manuscript and will be under embargo until the 24th of February 2015. The final version is published by NPG in Nature Cell Biology here: http://www.nature.com/ncb/journal/v16/n9/full/ncb3024.html
Increased indoleamine-2,3-dioxygenase activity is associated with poor clinical outcome in adults hospitalized with influenza in the INSIGHT FLU003Plus study
BACKGROUND:
Indoleamine-2,3-dioxygenase (IDO) mediated tryptophan (TRP) depletion has antimicrobial and immuno-regulatory effects. Increased kynurenine (KYN)-to-TRP (KT) ratios, reflecting increased IDO activity, have been associated with poorer outcomes from several infections.
METHODS:
We performed a case-control (1:2; age and sex matched) analysis of adults hospitalized with influenza A(H1N1)pdm09 with protocol-defined disease progression (died/transferred to ICU/mechanical ventilation) after enrollment (cases) or survived without progression (controls) over 60 days of follow-up. Conditional logistic regression was used to analyze the relationship between baseline KT ratio and other metabolites and disease progression.
RESULTS:
We included 32 cases and 64 controls with a median age of 52 years; 41% were female, and the median durations of influenza symptoms prior to hospitalization were 8 and 6 days for cases and controls, respectively (P = .04). Median baseline KT ratios were 2-fold higher in cases (0.24 mM/M; IQR, 0.13-0.40) than controls (0.12; IQR, 0.09-0.17; P ≤ .001). When divided into tertiles, 59% of cases vs 20% of controls had KT ratios in the highest tertile (0.21-0.84 mM/M). When adjusted for symptom duration, the odds ratio for disease progression for those in the highest vs lowest tertiles of KT ratio was 9.94 (95% CI, 2.25-43.90).
CONCLUSIONS:
High KT ratio was associated with poor outcome in adults hospitalized with influenza A(H1N1)pdm09. The clinical utility of this biomarker in this setting merits further exploration.
CLINICALTRIALSGOV IDENTIFIER:
NCT01056185
Design of bio-nanosystems for oral delivery of functional compounds
Nanotechnology has been referred to as one of the most interesting topics in food technology due to the potentialities of its use by food industry. This calls for studying the behavior of nanosystems as carriers of biological and functional compounds aiming at their utilization for delivery, controlled release and protection of such compounds during food processing and oral ingestion. This review highlights the principles of design and production of bio-nanosystems for oral delivery and their behavior within the human gastrointestinal (GI) tract, while providing an insight into the application of reverse engineering approach to the design of those bio-nanosystems. Nanocapsules, nanohydrogels, lipid-based and multilayer nanosystems are discussed (in terms of their main ingredients, production techniques, predominant forces and properties) and some examples of possible food applications are given. Phenomena occurring in in vitro digestion models are presented, mainly using examples related to the utilization of lipid-based nanosystems and their physicochemical behavior throughout the GI tract. Furthermore, it is shown how a reverse engineering approach, through two main steps, can be used to design bio-nanosystems for food applications, and finally a last section is presented to discuss future trends and consumer perception on food nanotechnology.Miguel A. Cerqueira, Ana C. Pinheiro, Helder D. Silva, Philippe E. Ramos, Ana I. Bourbon, Oscar L. Ramos (SFRH/BPD/72753/2010, SFRH/BD/48120/2008, SFRH/BD/81288/2011, SFRH/BD/80800/2011, SFRH/BD/73178/2010 and SFRH/BPD/80766/2011, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE Portugal). Maria L. Flores-Lopez thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant number: 215499/310847). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged
- …
