42 research outputs found

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored

    Minimal Supersymmetric Inverse Seesaw: Neutrino masses, lepton flavour violation and LHC phenomenology

    Get PDF
    We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μeγ\mu \to e \gamma, and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.Comment: 26 pages, 4 figures; added explanatory comments, final version for publicatio

    A4 Flavor Models in Split Seesaw Mechanism

    Full text link
    A seesaw mechanism in an extra-dimension, known as the split seesaw mechanism, provides a natural way to realize a splitting mass spectrum of right-handed neutrinos. It leads to one keV sterile neutrino as a dark matter candidate and two heavy right-handed neutrinos being responsible for leptogenesis to explain the observed baryon asymmetry of the Universe. We study models based on A4A_4 flavor symmetry in the context of the split seesaw mechanism. It is pointed out that most of known A4A_4 flavor models with three right-handed neutrinos being A4A_4 triplet suffer from a degeneracy problem for the bulk mass terms, which disturbs the split mechanism for right-handed neutrino mass spectrum. Then we construct a new A4A_4 flavor model to work in the split seesaw mechanism. In the model, the experimentally observed neutrino masses and mixing angles can be realized from both type I+II seesaw contributions. The model predicts the μτ\mu-\tau symmetry in the neutrino mass matrix at the leading order, resulting in the vanishing θ13\theta_{13} and maximal θ23\theta_{23}. The flavor symmetry A4A_4 is broken via the flavon vacuum alignment which can be obtained from the orbifold compactification. The model can be consistent with all data of neutrino oscillation experiments, cosmological discussions of dark matter abundance, leptogenesis, and recent astrophysical data.Comment: 21 pages, 1 figure, version to appear in JHE

    Sneutrino dark matter in low-scale seesaw scenarios

    Get PDF
    We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section

    Prader–Willi syndrome and autism spectrum disorders: an evolving story

    Get PDF
    Prader–Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11–q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11–q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism

    Backbending, seniority, and Pauli blocking of pairing correlations at high rotational frequencies in rapidly rotating nuclei

    Get PDF
    Garrett et al. systematically investigated band-crossing frequencies resulting from the rotational alignment of the first pair of i13/2 neutrons (AB) in rare-earth nuclei. In that study, evidence was found for an odd-even neutron number dependence attributed to changes in the strength of neutron pairing correlations. The present paper carries out a similar investigation at higher rotational frequencies for the second pair of aligning i13/2 neutrons (BC). Again, a systematic difference in band-crossing frequencies is observed between odd-N and even-N Er, Yb, Hf, and W nuclei, but in the BC case, it is opposite to the AB neutron-number dependence. These results are discussed in terms of a reduction of neutron pairing correlations at high rotational frequencies and of the effects of Pauli blocking on the pairing field by higher-seniority configurations. Also playing a significant role are the changes in deformation with proton and neutron numbers, the changes in location of single-particle orbitals as a function of quadrupole deformation, and the position of the Fermi surface with regard to the various ω components of the neutron i13/2 shell

    Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease

    Get PDF
    Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine
    corecore