290 research outputs found

    Probabilistic aspects of critical growth-fragmentation equations

    Get PDF
    The self-similar growth-fragmentation equation describes the evolution of a medium in which particles grow and divide as time proceeds, with the growth and splitting of each particle depending only upon its size. The critical case of the equation, in which the growth and division rates balance one another, was considered by Doumic and Escobedo in the homogeneous case where the rates do not depend on the particle size. Here, we study the general self-similar case, using a probabilistic approach based on L\'evy processes and positive self-similar Markov processes which also permits us to analyse quite general splitting rates. Whereas existence and uniqueness of the solution are rather easy to establish in the homogeneous case, the equation in the non-homogeneous case has some surprising features. In particular, using the fact that certain self-similar Markov processes can enter (0,)(0,\infty) continuously from either 00 or \infty, we exhibit unexpected spontaneous generation of mass in the solutions.Comment: 28 pages. v2 adds an expository section 6 and fixes some error

    A probabilistic approach to spectral analysis of growth-fragmentation equations

    Get PDF
    The growth-fragmentation equation describes a system of growing and dividing particles, and arises in models of cell division, protein polymerisation and even telecommunications protocols. Several important questions about the equation concern the asymptotic behaviour of solutions at large times: at what rate do they converge to zero or infinity, and what does the asymptotic profile of the solutions look like? Does the rescaled solution converge to its asymptotic profile at an exponential speed? These questions have traditionally been studied using analytic techniques such as entropy methods or splitting of operators. In this work, we present a probabilistic approach: we use a Feynman–Kac formula to relate the solution of the growth-fragmentation equation to the semigroup of a Markov process, and characterise the rate of decay or growth in terms of this process. We then identify the Malthus exponent and the asymptotic profile in terms of a related Markov process, and give a spectral interpretation in terms of the growth-fragmentation operator and its dual

    Large deviations for clocks of self-similar processes

    Full text link
    The Lamperti correspondence gives a prominent role to two random time changes: the exponential functional of a L\'evy process drifting to \infty and its inverse, the clock of the corresponding positive self-similar process. We describe here asymptotical properties of these clocks in large time, extending the results of Yor and Zani

    Empires and Percolation: Stochastic Merging of Adjacent Regions

    Full text link
    We introduce a stochastic model in which adjacent planar regions A,BA, B merge stochastically at some rate λ(A,B)\lambda(A,B), and observe analogies with the well-studied topics of mean-field coagulation and of bond percolation. Do infinite regions appear in finite time? We give a simple condition on λ\lambda for this {\em hegemony} property to hold, and another simple condition for it to not hold, but there is a large gap between these conditions, which includes the case λ(A,B)1\lambda(A,B) \equiv 1. For this case, a non-rigorous analytic argument and simulations suggest hegemony.Comment: 13 page

    On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data

    Full text link
    Consider an inviscid Burgers equation whose initial data is a Levy a-stable process Z with a > 1. We show that when Z has positive jumps, the Hausdorff dimension of the set of Lagrangian regular points associated with the equation is strictly smaller than 1/a, as soon as a is close to 1. This gives a negative answer to a conjecture of Janicki and Woyczynski. Along the way, we contradict a recent conjecture of Z. Shi about the lower tails of integrated stable processes

    The structure of typical clusters in large sparse random configurations

    Get PDF
    The initial purpose of this work is to provide a probabilistic explanation of a recent result on a version of Smoluchowski's coagulation equations in which the number of aggregations is limited. The latter models the deterministic evolution of concentrations of particles in a medium where particles coalesce pairwise as time passes and each particle can only perform a given number of aggregations. Under appropriate assumptions, the concentrations of particles converge as time tends to infinity to some measure which bears a striking resemblance with the distribution of the total population of a Galton-Watson process started from two ancestors. Roughly speaking, the configuration model is a stochastic construction which aims at producing a typical graph on a set of vertices with pre-described degrees. Specifically, one attaches to each vertex a certain number of stubs, and then join pairwise the stubs uniformly at random to create edges between vertices. In this work, we use the configuration model as the stochastic counterpart of Smoluchowski's coagulation equations with limited aggregations. We establish a hydrodynamical type limit theorem for the empirical measure of the shapes of clusters in the configuration model when the number of vertices tends to \infty. The limit is given in terms of the distribution of a Galton-Watson process started with two ancestors

    On the drawdown of completely asymmetric Levy processes

    Get PDF
    The {\em drawdown} process YY of a completely asymmetric L\'{e}vy process XX is equal to XX reflected at its running supremum Xˉ\bar{X}: Y=XˉXY = \bar{X} - X. In this paper we explicitly express in terms of the scale function and the L\'{e}vy measure of XX the law of the sextuple of the first-passage time of YY over the level a>0a>0, the time Gˉτa\bar{G}_{\tau_a} of the last supremum of XX prior to τa\tau_a, the infimum \unl X_{\tau_a} and supremum \ovl X_{\tau_a} of XX at τa\tau_a and the undershoot aYτaa - Y_{\tau_a-} and overshoot YτaaY_{\tau_a}-a of YY at τa\tau_a. As application we obtain explicit expressions for the laws of a number of functionals of drawdowns and rallies in a completely asymmetric exponential L\'{e}vy model.Comment: applications added, 26 pages, 3 figures, to appear in SP

    The azimuth structure of nuclear collisions -- I

    Full text link
    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.Comment: 27 pages, 12 figure

    Structure of shocks in Burgers turbulence with L\'evy noise initial data

    Full text link
    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by L\'evy noise, or equivalently when the initial potential is a two-sided L\'evy process ψ0\psi_0. When ψ0\psi_0 is abrupt in the sense of Vigon or has bounded variation with lim suph0h2ψ0(h)=\limsup_{|h| \downarrow 0} h^{-2} \psi_0(h) = \infty, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ0\psi_0 is abrupt we show that the shock structure is discrete. When ψ0\psi_0 is eroded we show that there are no rarefaction intervals.Comment: 22 page

    Levy targeting and the principle of detailed balance

    Full text link
    We investigate confined L\'{e}vy flights under premises of the principle of detailed balance. The master equation admits a transformation to L\'{e}vy - Schr\"{o}dinger semigroup dynamics (akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation). We solve a stochastic targeting problem for arbitrary stability index 0<μ<20<\mu <2 of L\'{e}vy drivers: given an invariant probability density function (pdf), specify the jump - type dynamics for which this pdf is a long-time asymptotic target. Our ("μ\mu-targeting") method is exemplified by Cauchy family and Gaussian target pdfs. We solve the reverse engineering problem for so-called L\'{e}vy oscillators: given a quadratic semigroup potential, find an asymptotic pdf for the associated master equation for arbitrary μ\mu
    corecore