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The structure of typical clusters

in large sparse random configurations

Jean Bertoin∗ Vladas Sidoravicius †

Abstract

The initial purpose of this work is to provide a probabilistic explanation of a recent

result on a version of Smoluchowski’s coagulation equations in which the number of ag-

gregations is limited. The latter models the deterministic evolution of concentrations of

particles in a medium where particles coalesce pairwise as time passes and each particle

can only perform a given number of aggregations. Under appropriate assumptions, the

concentrations of particles converge as time tends to infinity to some measure which bears

a striking resemblance with the distribution of the total population of a Galton-Watson

process started from two ancestors.

Roughly speaking, the configuration model is a stochastic construction which aims at

producing a typical graph on a set of vertices with pre-described degrees. Specifically,

one attaches to each vertex a certain number of stubs, and then join pairwise the stubs

uniformly at random to create edges between vertices.

In this work, we use the configuration model as the stochastic counterpart of Smolu-

chowski’s coagulation equations with limited aggregations. We establish a hydrodynamical

type limit theorem for the empirical measure of the shapes of clusters in the configura-

tion model when the number of vertices tends to ∞. The limit is given in terms of the

distribution of a Galton-Watson process started with two ancestors.

1 Introduction

The motivation for this work stems from a recent study of a deterministic model for coagula-

tion with limited number of aggregations. Specifically, in [5], one considers particles that are
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determined by a pair of integers (a, k) where k ≥ 1 represents the size and a ≥ 0 the number

of aggregations that the particle can perform. In the model called symmetric, coagulations

{(a, k), (a′, k′)} −→ (a + a′ − 2, k + k′)

occurs at rate

aa′ct(a, k)ct(a
′, k′) ,

where ct(a, k) denotes the concentration of particles (a, k) at time t in the medium. Analyti-

cally, this means that the evolution of concentrations is governed by the following variation of

Smoluchowski’s coagulation equations (cf. the survey by Aldous [2]):

d

dt
ct(a, k) = 1

2

a+1
∑

a′=1

k−1
∑

k′=1

a′(a − a′ + 2)ct(a
′, k′)ct(a − a′ + 2, k − k′)

−
∞
∑

a′=1

∞
∑

k′=1

aa′ct(a, k)ct(a
′, k′), (1)

where the first term in the right-hand side accounts for the creation of particles (a, k) as

the result of coagulations of pairs {(a′, k′), (a − a′ + 2, k − k′)} and the second term for the

disappearance of particles (a, k) after a coagulation with a particle (a′, k′).

One of the main results in [5] is that under appropriate conditions on the initial data that

we shall recall later on, the concentrations ct(a, k) have a limit as time t tends to infinity which

is given by

c∞(a, k) = 1{a=0}
1

k(k − 1)
ν∗k(k − 2) for a ∈ N and k ≥ 2 . (2)

Here, ν is a certain probability measure on N with
∑∞

n=0 nν(n) ≤ 1 that depends on the initial

data, and ν∗k = ν∗· · ·∗ν denotes its k-th convolution power. The expression (2) bears a striking

resemblance with a special case of the celebrated formula due to Dwass [9] who established that

the total population T2(ν) generated by a (sub)-critical Galton-Watson branching process with

reproduction law ν and started from two ancestors is given by

P(T2(ν) = k) =
2

k
ν∗k(k − 2) , k ≥ 2 . (3)

This invites for a probabilistic explanation and provides the incentive for the present work.

Our approach for relating (2) to (3) stems from the fact that solutions to the classical Smolu-

chowski’s coagulation equations (without restriction on the number of aggregations) appear as

the hydrodynamical limit of certain stochastic coalescent models introduced by Marcus and
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Lushnikov. In some loose sense, the latter describe the microscopic random dynamics of the

particle system when the macroscopic evolution is governed by Smoluchowski’s coagulation

equations. This important feature has been established rigorously by Norris [18]. We also

refer to Section 5.2.1 in [4] for an elementary approach in the special case of the multiplicative

kernel, as the latter bears an obvious similarity with (1). On the other hand, it is well-known

that the multiplicative coalescent is naturally related to the size of the connected components

in the random graph model of Erdös and Rényi, see in particular the remarkable paper by

Aldous [1]. This leads us to consider an extension of the random graph model where the se-

quence of degrees of vertices is given, and which is known as the configuration model. Loosely

speaking, the configuration model is constructed by an elementary stochastic algorithm which

aims at producing a random graph on a set of vertices with pre-described degrees; in general

the resulting graph is not simple, in the sense that there may exist loops and multiple edges.

Typically, a certain number of stubs is appended to each vertex, and one joins pairwise the

stubs uniformly at random to create edges between vertices. This induces a natural partition

of the set of vertices into clusters, i.e. connected components.

Since its introduction independently by Bollobás [7] and Wormald [20] (see also Bender and

Canfield [3]), this model has been studied in the mathematical literature by many authors. We

refer e.g. to [16] for an interesting review of applications of this and other random graph models

to some real life network systems. The main known results chiefly concern asymptotics when

the number of vertices is large and the empirical measure of the degrees of vertices converges.

In particular, Molloy and Reed [14] have determined the critical parameter for the existence of a

giant component; see also [15] and [17]. In different directions, van der Hofstad, Hooghiemstra

and co-authors [10, 12, 13] have made deep contributions to the study of distances between

vertices in such random graphs, while Britton et al. [8] used the configuration model to produce

large random simple graphs with pre-described asymptotic degree distribution.

If we neglect the appearance of multiple edges, loops or cycles which do not contribute

to aggregation of clusters, the configuration model may serve as a stochastic counterpart to

the deterministic evolution of concentrations in the variant (1) of Smoluchowski’s coagulation

equations. This leads us to investigate the size of typical clusters, and more generally their

combinatorial structures. Roughly speaking, the main result of this work is a hydrodynamical

limit theorem for the empirical distribution of the shapes of clusters rooted at a generic stub.

The limit is expressed in terms of a pair of Galton-Watson trees which are connected by an

extra edge between the two roots. In particular, this yields the probabilistic explanation of the

formal similarity between the solution (2) and Dwass formula (3).

Let us now present some heuristics which are close to some of those that have already been

used in the literature on configuration models to relate the latter to Galton-Watson processes;

see in particular [14] and [12]. Imagine that we pick a stub uniformly at random; the degree of
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the vertex to which this stub is appended has then the size-biased law of the degree of a typical

vertex. We then pick a second stub uniformly at random to create the first edge. Informally,

when the number of vertices is large, the degree of the vertex to which the second stub is

appended has again the size-biased law and is essentially independent of the first. These two

vertices should be viewed as the ancestors of two growing populations, where, by induction,

individuals beget independently and with a reproduction law given by the distribution of the

outer degree of a size-biased vertex. When the reproduction law is critical or sub-critical,

the Galton-Watson process eventually becomes extinct, and extinction occurs before any loop,

multiple edge or cycle arises in that cluster of the configuration model. This suggests that

the combinatorial structure of a typical (not too large) cluster could be described as a pair of

independent Galton-Watson trees which are connected by an additional edge between the two

roots. More precisely, the reproduction law should be given by the size-biased degree of a typical

vertex, shifted by one unit, because the number of children corresponds to the outer-degree of

the vertex.

The present work can be viewed as a companion to the recent paper [6], in which we also

identify in terms of certain Galton-Watson trees the limiting empirical distribution of random

structures that appear in a toy model for polymerization. More precisely, we consider in [6] a

system of grabbing particles, where particles consist in monomers having a certain number of

arms. Arms are activated successively uniformly at random, and each time an arm is activated,

it grabs a particle uniformly at random amongst those which have not been previously grabbed

and do not belong either to its own cluster. The main result of [6] is that when the initial

number of particles is large and the numbers of arms are given by i.i.d. random variables with

mean less than 1, then the empirical distribution of the shapes of polymers is closed to that

induced by a Galton-Watson tree with a single ancestor and reproduction law given by the

distribution of the number of arms of a typical monomer.

The plan of this work is as follows. The next section is devoted to preliminaries on configura-

tion models, the combinatorial structure of planar rooted trees, and Galton-Watson processes.

The emphasis is put on planar structures and their codings by the sequence of degrees via

breadth-first search. The main result on the empirical distribution of the structures of rooted

clusters in large random configurations is stated in Section 3 and then proved by explicit first

and second moments estimates. Finally Section 4 is devoted to some applications. We shall

point at certain invariance properties of Galton-Watson trees under random re-rooting, and

conclude by explaining the striking resemblance between the formulas (2) and (3).
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2 Preliminaries

2.1 Pairings, configurations and clusters

The aim of this work is to relate random configuration models to Galton-Watson trees, and as

the latter have a natural planar structure, we shall introduce the former in planar setting which

is tailored for our purposes. In this direction, we should imagine particles as planar star-shaped

objects consisting in a vertex to which a certain number of stubs are appended.

Formally, we consider some finite set V of vertices and a map d : V → N
∗ where d(v)

represents the degree of the vertex v, that is number of stubs attached to v. We denote by

S = S(V, d) the set of stubs and shall suppose for the sake of simplicity that the total number

of stubs

S := #S =
∑

v∈V

d(v)

is even; otherwise we may always decide to add a new stub to some vertex (or to add a vertex

with a single stub). We call a partition of S into S/2 pairs a pairing of stubs and write Π(S)

for the set of pairings of stubs. We first point at the following elementary facts.

Lemma 1 (i) The cardinal of Π(S) is given by

#Π(S) =
S!

(S/2)!
2−S/2 =

S/2
∏

i=1

(S − 2i + 1) .

(ii) Consider a partition of V into two subsets V1,V2 such that S1 :=
∑

v∈V1
d(v) and S2 :=

∑

v∈V2
d(v) are even numbers. Set S1 := S(V1, d) and S2 := S(V2, d). Then the map

(π1, π2) −→ π1 ⊔ π2

is a bijection from Π(S1)×Π(S2) to the subset of Π(S) consisting in pairings π such that there

are no pairs {s1, s2} in π formed by a stub s1 attached to a vertex in V1 and a stub s2 attached

to a vertex in V1.

Proof: Indeed, a generic pairing can be obtained by enumerating the stubs by {1, . . . , S}

and then pairing the stubs according to the couples (1, 2), (3, 4), . . . , (S − 1, S). There are

S! possible enumerations and the mapping is (S/2)!2S/2 on 1, where (S/2)! accounts for the

number of permutations of the S/2 couples (2i − 1, 2i), and 2S/2 for the number of ways S/2

unordered pairs can be ordered into couples. This establishes the first claim. The second is

obvious. �
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We then form edges e = {v, v′} with v, v′ ∈ V by joining the tips of pairs of stubs {s, s′},

where s (respectively, s′) is appended to v (respectively, to v′). We stress that an edge is

unoriented, that it can be a loop (i.e. the two vertices v and v′ defining an edge may coincide),

and that the same edge may appear by joining different pairs of stubs. Each pairing of stubs

π yields a configuration γ(π), that is the family of the S/2 edges induced by the pairing. Note

that there may be multiple edges; the same edge is repeated in γ(π) as many times as it arises

by joining different pairs of stubs in π. We also stress that the map π → γ(π) is not injective.

We view an edge which is not a loop as an elementary path connecting two different vertices,

so a configuration γ(π) on (V, d) naturally induces a partition of V into connected components.

Endowing a given connected component with the restriction of γ(π) to the set of edges formed

by pairs of vertices in that component, we obtain a cluster.

2.2 Planar rooted trees and their structures

Lemma 1(ii) enables us to reduce the study of a given cluster to that of pairings π ∈ Π(S)

such that the entire set of vertices V is connected for the configuration γ(π). We shall therefore

focus on that case in this section. Recall that a cycle is a sequence of ℓ ≥ 3 distinct vertices,

say v1, . . . , vℓ, such that there exists an edge connecting vj and vj+1 for every j = 1, . . . , ℓ − 1

and also an edge connecting vℓ and v1.

A configuration γ(π) that connects V is called a tree if it contains no loops, no multiple

edges, and no cycle. Note that this can occur only when S/2 = #V − 1. Because particles (i.e.

vertices and the stubs that are appended) can be viewed as planar objects, we may think of

tree-configurations as planar structures, in the sense that they can be represented in the plane

in such a way that edges are line segments which do no cross, by attributing lengths to the

edges in an appropriate manner. Throughout this section, we assume that #V = k and that

the configuration γ(π) is a tree; in particular γ(π) consists in k − 1 edges and S = 2(k − 1).

To describe precisely the shape, that is the combinatorial structure, of a tree, we need to

specify an origin and an orientation. For this, we distinguish a stub s and call it the root. This

stub is appended to a certain vertex v that we use as the origin. Distinguishing s also enables

us to order all the stubs attached to v by deciding that the first stub is s and the next (if any)

are ranked clockwise from that one. Further, for every vertex v′ 6= v in that tree, we distinguish

the stub appended to v′ that points at the origin v. This provides a natural order on the set of

stubs appended to any given vertex of the tree, and thus enables the use of breadth-first search

to enumerate the vertices of the tree.

Specifically, set s1 = s and v1 = v, define si+1 as the stub that is paired with the i-th

stub appended to v1 for i = 1, . . . , d(v1), and write vi+1 for vertex to which si+1 is appended.
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We should think of v2, . . . , vd(v1)+1 as the children of v1. The stub s2 is chosen as the first

of the stubs appended to v2, thus it is the unique stub pointing at the origin and the other

stubs attached to v2 are ranked clockwise from s2 and point at the children of v2 (i.e. the

vertices at distance 2 from the origin v1 and at distance 1 from v2). We denote these d(v2)− 1

children by vd(v1)+2, . . . , vd(v1)+d(v2)+1, and continue with the next children v3, . . . , vd(v1)+1 of v1

is an obvious way. Then we proceed with indexing the third generation of vertices, in the order

which is naturally induced by the indexation of the second generation, and so on. See the figure

below.
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Figure 1 : Enumeration by breadth-first search of the vertices of a planar tree

rooted at the stub =⊲. The degree sequence is (3, 4, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 1).

We write di for the degree of the i-th vertex. We stress that for 2 ≤ i ≤ k, the outer-degree

of vi, i.e. the number of stubs appended to vi that point away from the origin, is di − 1. It is

well-known that the sequence of degrees d = (d1, . . . , dk) fulfills

min{j ≥ 1 : d1 + · · ·+ dj = 2(j − 1)} = k , (4)

and characterizes a unique planar rooted tree structure. Conversely, any finite sequence d =

(d1, . . . , dk) such that (4) holds encodes a planar rooted tree structure with k vertices. We

write D for the set of sequences d = (d1, . . . , dk) which fulfill (4), where the lenght k ∈ N∗

is arbitrary, and think of the set D of sequences of degrees as the set of structures of planar

rooted trees. We refer for instance to Section 6.2 in Pitman [19] for details.

We now summarize this discussion, introducing first some terminology for convenience. A

bijection {1, . . . , k} → V can be represented as a sequence v = (v1, . . . , vk) of distinct vertices
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and will be referred to as an enumeration of V. We also call a map ς : V → S that associates to

each vertex v ∈ V a stub s ∈ S appended to that vertex a selection of stubs. For every pairing

π ∈ Π(S) such that the configuration γ(π) on V is a tree and every choice of a distinguished

stub s ∈ S, breadth first search yields a unique enumeration v = (v1, . . . , vk) of V such that

the sequence d(v) = (d(v1), . . . , d(vk)) belongs to D (i.e. fulfills (4)), and a unique a selection

of stubs ς. The map

(π, s) −→ (v, ς)

is bijective. More precisely, we recover the pairing π and the root stub s by first constructing

the planar rooted tree structure associated to d = (d(v1), . . . , d(vk)), and then placing the

vertices v1, . . . , vk on this structure in the order induced by the breadth first search. The first

stub appended to v1 is s = ς(v), and for every i = 2, . . . , k, ς(vi) is the stub appended to vi

which points at the origin v1. This determines the pairing π.

In order to record this analysis, it is convenient to introduce the multinomial coefficient

M(V, d) :=

(

k

ℓ1, . . . , ℓj

)

=
k!

ℓ1! · · · ℓj!
, (5)

where j is the number of different values, say x1, . . . , xj , occurring in the family (d(v) : v ∈ V),

and ℓi the number of occurrences of the value xi in that family. For every structure d ∈ D,

we say that d is compatible with (V, d) if there is at least an enumeration v = (v1, . . . , vk) of

V such that d = (d(v1), . . . , d(vk)), that is if and only if the sequence d takes the same values

with the same multiplicity as the family (d(v) : v ∈ V). The following statement should now

be plain.

Lemma 2 Suppose that #V = k and S = 2(k − 1). Fix a rooted planar tree structure d =

(d1, . . . , dk) ∈ D. If d is compatible with (V, d), then the number of pairs (π, s) ∈ Π(S)×S for

which the configuration γ(π) is a tree with structure d when rooted at s equals

M(V, d)
∏

v∈V

d(v).

Otherwise (i.e. if d is not compatible), this number is 0.

We stress that all the rooted planar tree structures which are compatible with (V, d) are thus

equally likely to occur if we choose the pair (π, s) ∈ Π(S) × S uniformly at random. In the

same vein, it may be also interesting to point at the following simple formula, even though it

will not be used in this paper .
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Proposition 1 Suppose that #V = k and S = 2(k− 1). The number of pairings π ∈ Π(S) for

which the configuration γ(π) is a tree, is

(k − 1)!
∏

v∈V

d(v),

Proof: To establish the formula, we simply need to calculate the number of enumerations v

of V for which the sequence (d(v1), . . . , d(vk)) corresponds to some rooted planar tree structure.

Recall from the ballot theorem (see, e.g., Lemma 6.1 in [19]) that for each enumeration v, there

is a unique cyclic permutation σ of {1, . . . , k} such that (d(vσ(1)), . . . , d(vσ(k))) fulfills (4). This

shows that this number is (k − 1)!. �

2.3 Galton-Watson trees with two ancestors

We consider now a probability measure ν on N and associate to ν a measure on D by

GW
ν
2(d) =

k
∏

i=1

ν(di − 1) , (6)

where d = (d1, . . . , dk) denotes a generic rooted planar tree structure.

The measure GW
ν
2 has a simple interpretation in terms of Galton-Watson branching pro-

cesses, and is in fact a sub-probability. More precisely, consider a Galton-Watson process with

reproduction law ν and started from two ancestors. The process can be represented on the

upper-half plane, where the individuals at generation ℓ ∈ N lie on horizontal line y = ℓ, in an

order consistent with that of their respective parents, so that the edges (line-segments) linking

parents to children do not cross each other. We further connect the two ancestors by an addi-

tional edge, and distinguish the stub attached to the left-most ancestor that thus points at the

right-most ancestor. This enables us to list individuals (vertices) by breadth first search just

as in the preceding section. Observe that the degree of the left-most ancestor (i.e. the origin)

is distributed as 1 + ξ where ξ is a random variable with law ν, whereas the outer-degrees of

the other individuals (i.e. their numbers of children) are given by independent copies of ξ.

The event when the total population is finite has probability one if and only if the reproduc-

tion law ν is critical or subcritical, i.e.
∑

i∈N
iν(i) ≤ 1, and ν 6= δ1. Restricting our attention

to this event, the structure of this planar rooted tree is a random variable in D which has

distribution GW
ν
2 and is defective in the supercritical case.

Remark. In the case when ν is the Poisson distribution with parameter p ≤ 1, then it is easily

checked that the law GW
ν
2 also describes the law of the genealogical tree of a Galton-Watson
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process with reproduction law ν, started from a single ancestor, and conditioned to have size

at least 2.

3 A limit theorem for typical rooted clusters

For each fixed integer n, we consider a set Vn of n vertices and a function dn : Vn → N∗ that

specifies the number of stubs appended to each vertex. We introduce the empirical distribution

of the number of stubs

µn(i) :=
1

n
#{v ∈ Vn : dn(v) = i} , i ∈ N

∗ .

We write

Sn :=
∑

v∈Vn

dn(v) = n

∞
∑

i=1

iµn(i)

for the total number of stubs, assuming for simplicity that this quantity is even. Our basic

assumption is that the limit

lim
n→∞

µn(i) := µ(i) (7)

exists for every i ≥ 1, and that the average number of stubs

n−1Sn =

∞
∑

i=1

iµn(i)

converges as n → ∞ to the first moment of µ, i.e.

lim
n→∞

∞
∑

i=1

iµn(i) =
∞
∑

i=1

iµ(i) := m < ∞ . (8)

We also denote by µ∗ the probability measure on N∗ which is obtained from µ by size-biased

sampling, that is

µ∗(i) :=
iµ(i)

m
, i ∈ N

∗ .

A standard application of Scheffé’s lemma shows that (7) can then be re-enforced to

lim
n→∞

iµn(i)
n

Sn

= µ∗(i) in L1(N∗). (9)

Finally, we introduce the probability measure ν on N induced from µ∗ by the shift i → i − 1

from N∗ to N, viz.

ν(i) = µ∗(i + 1) , i ≥ 0 .
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We write Sn for the set of stubs appended to vertices in Vn. We pick a pairing π ∈ Π(Sn)

uniformly at random, and denote by Γn := γ(π) the resulting random configuration on (Vn, dn).

For every stub s ∈ Vn, if the cluster of Γn which contains s is a tree, then Ts denotes the

combinatorial structure which results from rooting that tree at the stub s (see Section 2.2),

and otherwise, we decide that Ts = ∅.

We are interested in the random variable

ρn(d) :=
1

Sn

#{s ∈ Sn : Ts = d} , d ∈ D

which counts the proportion of stubs s such that the cluster rooted at s induced by Γn is a tree

with structure d. Similarly, we write

ρn(∅) :=
1

Sn
#{s ∈ Sn : Ts = ∅}

for the proportion of stubs s such that the cluster containing s induced by Γn is not a tree.

The collection (ρn(d) : d ∈ D) should thus be viewed as a variant of the empirical measure of

tree-clusters. We now able to state our main asymptotic result on large random configurations.

Theorem 1 Assume that (7) and (8) hold. Then for every planar rooted tree configuration

d ∈ D, the following limit holds in L2(P) :

lim
n→∞

ρn(d) = GW
ν
2(d) .

If we further suppose that
∞
∑

i=1

i(i − 2)µ(i) ≤ 0 , (10)

and also exclude the degenerate case when µ is the Dirac point mass at 2, then

lim
n→∞

ρn(∅) = 0 in L1(P).

The condition (10) plays an important part for random configuration models. According to

a well-known result due to Molloy and Reed [14], when (10) fails (assuming also some further

technical conditions), then there is some constant c > 0 such that with probability one, the

random configuration Γn contains almost surely a cluster of size at least cn when n is sufficiently

large. The size of this giant component is estimated in [15]. At the opposite, when (10) holds

with a strict inequality (again assuming some further technical conditions), Molloy and Reed

[14] have shown that with probability one, the random configuration Γn contains at most n1/4

cycles and no cluster of size at least n1/4 whenever n is sufficiently large. Note that in the
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critical case when (10) is an equality, Theorem 1 implies that the probability that there is a

cluster of size at least εn tends to 0 for any ε > 0, because GW
ν
2 is a probability measure on

D.

The proof of Theorem 1 relies on asymptotics for the first and second moments of ρn(d).

We first state:

Lemma 3 We have

lim
n→∞

E(ρn(d)) = GW
ν
2(d)

for every d ∈ D.

Proof: Let the structure d = (d1, . . . , dk) have size k ≥ 2. We write V ′ for a generic subset of

Vn with k vertices and S ′ for the set of stubs in Sn which are appended to vertices in V ′. There

are two cases.

If the unordered families of degrees {d(v′) : v′ ∈ V ′} and {di : 1 ≤ i ≤ k} do no coincide

(recall that in such families, numbers are repeated according to their multiplicity), then there

is no pairing of stubs for which the vertices of V ′ are those of a tree-cluster with structure d

when properly rooted. We say that V ′ is bad.

Otherwise, we say that V ′ is good. Introduce the set G′ of couples (s, π) ∈ S ′ × Π(Sn) such

that the cluster rooted at s induced by the configuration γ(π) is a tree whose set of vertices

coincides with V ′ and has structure d. The cardinal of G′ can then be computed by combining

Lemmas 1 and 2. Since #S ′ = 2(k − 1), one gets

#G′ = M(d)
(Sn − 2(k − 1))!

(Sn/2 − k + 1)!
2−Sn/2+k−1

k
∏

i=1

di , (11)

where M(d) denotes the multinomial coefficient

M(d) :=

(

k

ℓ1, . . . , ℓj

)

=
k!

ℓ1! · · · ℓj !
,

with j the number of different values in the sequence d and ℓi the number of occurrences in d

of the i-th value for 1 ≤ i ≤ j.

So it remains to estimate the number of good subsets V ′ with k vertices, and for this we

use a probabilistic argument. We sample uniformly at random k vertices in Vn, say, v1, . . . , vk,

successively and without replacement. It should be plain from the hypothesis (7) that when

n → ∞, the k-tuple of degrees (dn(v1), . . . dn(vk)) converges in distribution to the k-tuple

formed by i.i.d. variables with law µ; in particular the probability that (dn(v1), . . . , dn(vk)) = d

12



tends to
∏k

i=1 µ(di) as n → ∞. We readily deduce that the probability that the (unordered)

family {d(v1), . . . , d(vk)} is good converges as n → ∞ to

k!

M(d)

k
∏

i=1

µ(di) .

As there are n!/(n−k)! ∼ nk k-tuples of distinct vertices in Vn and as the map that transforms

a k-tuple into an unordered set is k! to 1, we conclude that the number of good subsets in Vn

is equivalent for large n to

nk

M(d)

k
∏

i=1

µ(di) . (12)

Recall from Lemma 1(i) that

# (Sn × Π(Sn)) = Sn
Sn!

(Sn/2)!
2−Sn/2 ,

and that diµ(di) = mν(di − 1), by definition. Putting the pieces together, we find

E(ρn(d)) ∼
nk

Sn

(Sn − 2(k − 1))!(Sn/2)!

Sn!(Sn/2 − k + 1)!
2k−1

k
∏

i=1

(diµ(di))

∼
nk

Sn

S−2(k−1)
n (Sn/2)k−1 2k−1

k
∏

i=1

(mν(di − 1))

=
(nm)k

Sk
n

k
∏

i=1

ν(di − 1) .

By (6) and (8), this completes the proof. �

Lemma 3 essentially means that if we pick a stub s uniformly at random in Sn and indepen-

dently of the random configuration Γn, then the conditional distribution of the combinatorial

structure of the random cluster rooted at s given the event that this cluster is a tree, converges

weakly as n → ∞ to the Galton-Watson law GW
ν
2. Theorem 1 is a much stronger statement

that involves the empirical distribution of structures of clusters, and requires second moment

estimates.

Lemma 4 We have

lim
n→∞

E((ρn(d))2) = (GW
ν
2(d))2

for every d ∈ D.

Proof: The argument is similar to that of Lemma 3; in particular we shall use the same

13



notation and terminology. We start from the expression

E((ρn(d))2) = S−2
n E (#{(s′, s′′) ∈ Sn × Sn : Ts′ = Ts′′ = d}) .

Let V ′ and V ′′ two generic subsets of Vn, both with k vertices, and write S ′ (respectively,

S ′′) for the set of stubs in Sn which are appended to vertices in V ′ (respectively, V ′′). Note that

for every stubs s′ ∈ S ′ and s′′ ∈ S ′′, the identity Ts′ = Ts′′ 6= ∅ can occur only if V ′ and V ′′ are

both good and, either coincide or are disjoint.

We first consider the situation when V ′ = V ′′. Recall that for any s′ ∈ S ′, if Ts′ = d, then

S ′ = S ′′has exactly 2(k − 1) stubs. It follows from the proof of Lemma 3 that the number

of triplets (s′, s′′, π) ∈ S ′ × S ′′ × Π(Sn) such that the cluster rooted at s′ induced by the

configuration γ(π) is a tree whose set of vertices coincides with V ′ and Ts′ = Ts′′ = d, is

bounded from above by

2(k − 1)M(d)
(Sn − 2(k − 1))!

(Sn/2 − k + 1)!
2−Sn/2+k−1

k
∏

i=1

di ;

see (11). Multiplying this by the number of good subsets V ′ in Vn, that is approximatively by

(12), we get a quantity which is small compared to

#(Sn × Sn × Π(Sn)) = S2
n

Sn!

(Sn/2)!
2−Sn/2

when n → ∞. We conclude that in the evaluation of E((ρn(d))2), the contribution of pairs of

stubs (s′, s′′) that belong to the same cluster becomes asymptotically negligible.

Next we consider the situation when V ′ and V ′′ are good and disjoint. By calculations similar

to those that yield (12) in the proof of Lemma 3, we get that the number of good disjoint pairs

of subsets (V ′,V ′′) in Vn is equivalent for large n to

n2k

M(d)2

(

k
∏

i=1

µ(di)

)2

.

It then follows from Lemmas 1 and 2 that the number of triplets (s′, s′′, π) ∈ S ′ × S ′′ × Π(Sn)

such that Ts′ = Ts′′ = d and the stubs s′ and s′′ belong to disjoint clusters is close to

n2k (Sn − 4(k − 1))!

(Sn/2 − 2k + 2)!
2−Sn/2+2k−2

(

k
∏

i=1

diµ(di)

)2

.
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Putting the pieces together yields the estimate

E((ρn(d))2 ∼
n2k

S2
n

(Sn − 4(k − 1))!(Sn/2)!

Sn!(Sn/2 − 2k + 2)!
22k−2

(

k
∏

i=1

diµ(di)

)2

∼
n2k

S2
n

S−4(k−1)
n (Sn/2)2k−2 22k−2

(

k
∏

i=1

(mν(di − 1))

)2

∼

(

k
∏

i=1

ν(di − 1)

)2

.

By (6), this shows our claim. �

We are now able to establish Theorem 1.

Proof of Theorem 1: Combining Lemmas 3 and 4, we see that the variance of ρn(d) tends

to 0 as n → ∞, which establishes the first claim. Assume now further that (10) holds and that

µ 6= δ2. Equivalently, this means that the reproduction law ν of the Galton-Watson process is

critical or sub-critical, and is not the Dirac mass at 1. So extinction occurs a.s. and

∑

d∈D

GW
ν
2(d) = 1 .

As

ρn(∅) = 1 −
∑

d∈D

ρn(d) ,

Fatou lemma entails our second assertion. �

4 Some applications

In this Section, we shall develop some consequences of our main result. Recall that Theorem

1 implies that if one selects a stub uniformly at random and independently of a large random

configuration that fulfills the conditions there, then the structure of the cluster rooted at that

stub has asymptotically the distribution GW
ν
2 . This hints at an interesting property of invari-

ance of such Galton-Watson trees under uniform random re-rooting. Recall the construction

of the structure of a planar tree rooted at some stub as it has been presented in Section 2.2;

Figure 2 below should explain better than words what is meant by re-rooting a rooted planar

tree at some stub.

Corollary 1 Suppose that ν is a critical or subcritical probability measure on N with ν 6= δ1.

Let D be a random rooted planar tree structure with distribution GW
ν
2. Conditionally on D,
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select one of the 2(|D|−1) stubs of D uniformly at random, and denote by D′ the new structure

obtained from D by re-rooting at that stub. Then D′ has again the law GW
ν
2.
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Figure 2 : Two genealogical trees, both with two ancestors lying at the lowest level.

The left-most ancestor serves as the origin, the root-stub pointing at the right-most ancestor.

The tree on the right is the image of the tree on the left by re-rooting at the stub =⊲.

Vertices are labeled by breadth first order before re-rooting.

Proof: Re-rooting has no effect on the degree of a vertex, so we only need to verify the

statement for the conditional law of the Galton-Watson genealogical tree with two ancestors

given the unordered family of the degrees of vertices.

Fix some unordered family, say ∆, of k positive integers (with possible repetitions), which

add up to 2(k−1) and such that ν(δ−1) > 0 for any integer δ in that family. Denote by D(∆)

the subset of rooted planar tree structures corresponding to some ordering of ∆. We see from

(6) that the conditional law GW
ν
2(· | D(∆)) is simply the uniform distribution on D(∆).

Next consider the random configuration on a set k vertices with degree family ∆ that is

induced by uniform random pairing, given that this configuration is a tree. Then root the

configuration using some stub that is picked independently and uniformly at random. On

the one hand, by construction, the law of the resulting combinatorial structure is obviously

invariant by uniform random re-rooting. On the other hand, we see from Lemma 2 that it also

coincides with the uniform distribution D(∆). This established our claim. �

We also refer to the recent work by Haas et al. [11] and references therein for a different

property of invariance under uniform re-rooting for certain classes of random continuous trees.
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It may be interesting to point also at the following avatar of Corollary 1. A planar rooted

tree is said planted if the degree of the origin, i.e. of the vertex to which the root-stub is

appended, is 1. In other words, the combinatorial structure d = (d1, . . . , dk) fulfills d1 = 1. So

a planted Galton-Watson tree describes the genealogy of a population where individuals beget

independently with the same reproduction law, except the ancestor who has exactly one child.

An easy consequence of Corollary 1 is that in the critical or sub-critical case, the structure of

a planted Galton-Watson tree is statistically invariant under re-rooting at a leaf (i.e. a vertex

with degree 1) chosen uniformly at random.

We next turn our attention to some quantitative consequences of Theorem 1, denoting for

every k ≥ 2 by Cn(k) the number of clusters of size k in the random configuration Γn, i.e. the

number of distinct connected components with k vertices in the partition of Vn induced by Γn.

Corollary 2 Assume that (7), (8) and (10) hold, and exclude the case when µ = δ2. We have

lim
n→∞

∞
∑

k=2

kE

(
∣

∣

∣

∣

n−1Cn(k) −
m

k(k − 1)
ν∗k(k − 2)

∣

∣

∣

∣

)

= 0 .

Proof: Let us introduce first for every k ≥ 2 the subset Dk of D consisting of structures of

rooted planar trees d = (d1, . . . , dk) of lenght k, and recall that according to Dwass [9],

GW
ν
2(Dk) =

2

k
ν∗k(k − 2) ,

where ν∗k stands for the k-th convolution power of ν. As a tree of size k has exactly 2(k − 1)

stubs and Dk is a finite set, we deduce from Theorem 1 that if we denote by τn(k) the number

of clusters which are trees of size k, then

lim
n→∞

2(k − 1)

Sn
τn(k) =

2

k
ν∗k(k − 2) ,

where the convergence takes place in L2(P) and for every k ≥ 2. Then we pick an arbitrary

sequence of integers that tends to ∞, from which we can excerpt by a diagonal extraction

procedure a subsequence such that with probability one,

lim
n ∞

2(k − 1)

Sn

τn(k) =
2

k
ν∗k(k − 2) for all k ≥ 2,

where the notation n ∞ means that n tends to infinity along that subsequence.
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Then observe that for each n, there is the obvious inequality

∑

k≥2

2(k − 1)τn(k) ≤ Sn ,

while
∑

k≥2

2

k
ν∗k(k − 2) =

∑

k≥2

GW
ν
2(Dk) = 1 ,

since the reproduction law ν of the Galton-Watson process is critical or sub-critical and ν 6= δ1.

A standard combination of Fatou and Scheffé lemmas entails that

lim
n ∞

∞
∑

k=2

E

(
∣

∣

∣

∣

2(k − 1)

Sn

τn(k) −
2

k
ν∗k(k − 2)

∣

∣

∣

∣

)

= 0 .

Next, note that τn(k) ≤ Cn(k) and
∑

k≥2 2(k − 1)Cn(k) ≤ Sn as at least 2(k − 1) distinct

stubs are needed to connect k vertices. It follows that

∞
∑

k=2

E

(
∣

∣

∣

∣

2(k − 1)

Sn
(Cn(k) − τn(k))

∣

∣

∣

∣

)

= E

(

∞
∑

k=2

2(k − 1)

Sn
Cn(k)

)

− E

(

∞
∑

k=2

2(k − 1)

Sn
τn(k))

)

≤ 1 − E

(

∞
∑

k=2

2(k − 1)

Sn

τn(k))

)

,

and we know from above that this quantity tends to 0 as n ∞.

This shows that

lim
n ∞

∞
∑

k=2

E

(
∣

∣

∣

∣

2(k − 1)

Sn
Cn(k) −

2

k
ν∗k(k − 2)

∣

∣

∣

∣

)

= 0 ,

and since by the assumption (8), Sn/n → m, we have thus proved that

lim
n ∞

∞
∑

k=2

kE

(
∣

∣

∣

∣

1

n
Cn(k) −

m

k(k − 1)
ν∗k(k − 2)

∣

∣

∣

∣

)

= 0 .

As the sequence of integers tending to infinity that we started from is arbitrary, this establishes

our claim. �

Corollary 2 provides the explanation for the asymptotic behavior (2) that motivated this

work. Specifically, we know from Theorem 1 that when the requirements (7), (8) and (10) are

fulfilled, then, roughly speaking, multiple edges, loops or cycles are rare. Roughly speaking, this
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means that almost all creation of edges correspond to aggregations of clusters and thus enables

us to view the configuration model as a stochastic microscopic version of the terminal state of

concentrations with a deterministic evolution governed by the variant (1) of Smoluchowski’s

coagulation equations. In [5], one assumes that initially all particles are monomers, i.e. consist

in isolated vertices to which some stubs are appended. In the notation of the present work

(beware that this differs from that in [5]!), the initial concentration of particles with i ≥ 1

stubs is m−1µ(i), which is a finite measure on N∗ with unit first moment. In the framework

of the random configuration model with n vertices, this corresponds to assuming that particles

live in a volume mn and hence the the initial concentration of monomers with i stubs is given

by

m−1µn(i) =
1

mn
#{v ∈ Vn : dn(v) = i} , k ∈ N

∗ .

After the random pairing, the concentration of polymers with size k (i.e. clusters with k

vertices) is then (mn)−1Cn(k) and Corollary 2 shows that

lim
n→∞

1

mn
Cn(k) := c∞(0, k) =

1

k(k − 1)
ν∗k(k − 2) .

One has thus recovered (2).

We also note that Corollary 2 solves a problem that has been addressed in Section II.C of

[17] by analytic and numerical technics.
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