research

Levy targeting and the principle of detailed balance

Abstract

We investigate confined L\'{e}vy flights under premises of the principle of detailed balance. The master equation admits a transformation to L\'{e}vy - Schr\"{o}dinger semigroup dynamics (akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation). We solve a stochastic targeting problem for arbitrary stability index 0<μ<20<\mu <2 of L\'{e}vy drivers: given an invariant probability density function (pdf), specify the jump - type dynamics for which this pdf is a long-time asymptotic target. Our ("μ\mu-targeting") method is exemplified by Cauchy family and Gaussian target pdfs. We solve the reverse engineering problem for so-called L\'{e}vy oscillators: given a quadratic semigroup potential, find an asymptotic pdf for the associated master equation for arbitrary μ\mu

    Similar works

    Full text

    thumbnail-image

    Available Versions