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Applied Probability Trust (24 September 2015)

PROBABILISTIC ASPECTS OF CRITICAL
GROWTH-FRAGMENTATION EQUATIONS

JEAN BERTOIN,∗ University of Zurich

ALEXANDER R. WATSON,∗∗ University of Manchester

Abstract

The self-similar growth-fragmentation equation describes the evolution of a
medium in which particles grow and divide as time proceeds, with the growth
and splitting of each particle depending only upon its size. The critical case
of the equation, in which the growth and division rates balance one another,
was considered by Doumic and Escobedo [11] in the homogeneous case where
the rates do not depend on the particle size. Here, we study the general
self-similar case, using a probabilistic approach based on Lévy processes and
positive self-similar Markov processes which also permits us to analyse quite
general splitting rates. Whereas existence and uniqueness of the solution are
rather easy to establish in the homogeneous case, the equation in the non-
homogeneous case has some surprising features. In particular, using the fact
that certain self-similar Markov processes can enter (0, ∞) continuously from
either 0 or ∞, we exhibit unexpected spontaneous generation of mass in the
solutions.
Keywords: Growth-fragmentation equation; self-similarity; self-similar Markov
process; branching process.
2010 Mathematics Subject Classification: Primary 35Q92

Secondary 45K05; 60G18; 60G51

1. Introduction

The growth-fragmentation equation is a linear differential equation intended to
describe the evolution of a medium in which particles grow and split as time passes.
It is frequently expressed in terms of the concentration of particles with size x > 0 at
time t, say u(t, x), as follows:

∂tu(t, x) + ∂x(τ(x)u(t, x)) +B(x)u(t, x) =
∫ ∞
x

k(y, x)B(y)u(t, y)dy, (1.1)

where τ(x) is the speed of growth of a particle with size x, B(x) the rate at which a
particle of size x splits, and k(y, x) = k(x − y, x) twice the probability density that
a particle with size x splits into two particles with size yx and (1 − y)x (the factor 2
is due to the symmetry of the splitting events). This type of equation has a variety
of applications in mathematical modeling, notably in biology where particles should
be thought of as cells, and has motivated several works in the recent years; see, for
example, [11], which also contains a summary of some recent literature.

∗ Postal address: Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich,
Switzerland
∗∗ Postal address: School of Mathematics, University of Manchester, Manchester, M13 9PL, UK

1



2 JEAN BERTOIN AND ALEXANDER R. WATSON

We are interested here in the situation τ(x) = cxα+1, B(x) = xα for some α ∈ R
and k has the form k(y, x) = x−1k0(y/x); for these parameters, (1.1) possesses a useful
self-similarity property. This is referred to as the critical case by Doumic and Escobedo
[11], who studied in depth the situation when, additionally, α = 0. For our purposes, it
will be more convenient to write the equation in weak form, as follows. For x > 0 and
y ∈ [1/2, 1), we write (y | x) for the pair {yx, (1−y)x}, which we view as the dislocation
of a mass x into two smaller masses, and then for every function f : (0,∞) → R, we
set

f(y | x) := f(yx) + f((1− y)x).

Consider test functions f ∈ C∞c (0,∞), that is, f is infinitely differentiable with com-
pact support. For a measure µ on (0,∞), we write 〈µ, f〉 :=

∫
(0,∞) f(x)µ(dx). By

integrating (1.1), we obtain the equation

∂t〈µt, f〉 = 〈µt,Lf〉 , (1.2)

where µt(dx) = u(t, x)dx and the operator L has the form

Lf(x) = xα

(
cxf ′(x) +

∫
[1/2,1)

(f(y | x)− f(x))K(dy)
)
, (1.3)

where
K(dy) := k0(y)dy = k0(1− y)dy , y ∈ [1/2, 1),

is referred to as the dislocation measure. The advantage of this formulation is that
we do not require absolute continuity of the solution µt or the dislocation measure
K. More generally, one might also consider non-binary dislocation measures, but we
refrain from doing so in this work in order to simplify the presentation.

In this article, we study the equation (1.2) for operators of the form

Lαf(x) := xα
(
ax2f ′′(x) + bxf ′(x) +

∫
[1/2,1)

(
f(y | x)− f(x) + xf ′(x)(1− y)

)
K(dy)

)
,

(1.4)
where a ≥ 0, b ∈ R, and we now only assume that the measure K satisfies the weaker
requirement ∫

[1/2,1)
(1− y)2K(dy) <∞. (1.5)

Our notion of a solution of (1.2) is a collection of locally finite measures (µt)t≥0 on
(0,∞) such that, for every f ∈ C∞c (0,∞) and t ≥ 0, there is the identity

〈µt, f〉 = 〈µ0, f〉+
∫ t

0
〈µs,Lf〉ds.

(This requires implicitly that s 7→ 〈µs,Lf〉 be a well-defined, locally integrable function,
and in particular the family (µt)t≥0 is then vaguely continuous).

We offer a comparison between the original operator (1.3) and our operator (1.4).
Besides the appearance of a second order derivative, there is a new term xf ′(x)(1− y)
in the integral in (1.4). The latter should be interpreted as an additional growth term
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which, in some sense, balances the accumulation of small dislocations. We stress that
(1.5) is the necessary and sufficient condition for (1.4) to be well-defined, and that
when the measure K is finite (or at least fulfills

∫
[1/2,1)(1 − y)K(dy) < ∞), every

operator of the form (1.3) can also be expressed in the form (1.4). Our motivation for
considering this more general setting stems from the recent work [3], in which a new
class of growth-fragmentation stochastic processes is constructed such that, loosely
speaking, the strong rates of dislocation that would instantaneously shatter the entire
mass can be somehow compensated by an intense growth; the dislocation measure
associated with such a fragmentation process need only satisfy (1.5).

In short, the purpose of this work is to demonstrate the usefulness of some proba-
bilistic methods for the study of these critical growth-fragmentation equations. More
precisely, we shall see that solutions to (1.2) for L = Lα can be related to the
one-dimensional distributions of certain self-similar Markov processes, and this will
enable us to reveal some rather unexpected features of the former. Although in the
homogeneous case α = 0, we establish existence and uniqueness of the solution in full
generality, this feature is lost for α 6= 0. In particular, we shall see that under a fairly
general assumption on the parameters of the model, the critical growth-fragmentation
equation permits spontaneous generation, i.e. there exist non-degenerate solutions
starting from the null initial condition.

We need some notation before describing more precisely our main results. We first
introduce the function κ : [0,∞)→ (−∞,∞] which plays a major role in our approach
and is given by:

κ(q) := aq2 + (b− a)q+
∫

[1/2,1)
(yq + (1− y)q − 1 + q(1− y))K(dy), q ≥ 0. (1.6)

There are two principal ‘Malthusian hypotheses’ which we will require when α 6= 0:

(M+) infq≥0 κ(q) < 0.

(M−) There exist 0 ≤ ω− < ω+ and ε > 0 such that κ(ω−) = κ(ω+) = 0 and
κ(ω− − ε) <∞.

We now summarise our main results, deferring their proofs to the body of the article.

• For α = 0, the equation (1.2) with operator (1.4) and initial condition µ0 = δ1
has a unique solution.
• For α < 0: suppose that (M+) holds. Then, the equation (1.2) with operator
(1.4) has a solution with initial condition µ0 = δ1. There exists further a non-
degenerate solution started from µ0 = 0; in particular, uniqueness fails.
• For α > 0: if (M+) holds, then the equation (1.2) with operator (1.4) has a
solution with initial condition µ0 = δ1. If (M−) holds, then there also exists a
non-degenerate solution started from µ0 = 0; again, uniqueness fails.

We shall also observe that under essentially the converse assumption to (M+),
namely that infq≥0 κ(q) > 0, the particle system that corresponds to the stochastic
version of the model may explode in finite time almost surely. This is a strong indication
that (1.2) should have no global solution in the latter case.
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The rest of this article is organized as follows. The next section provides brief prelim-
inaries on the function κ and the use of the Mellin transform in the study of growth-
fragmentation equations. Section 3 is devoted to the homogeneous case α = 0, and then
the general self-similar case α 6= 0 is presented in section 4. In section 5, we investigate
a stochastic model related to the growth-fragmentation equation, to demonstrate that
explosion may occur when the Malthusian hypothesis fails. Finally, in section 6, we
briefly discuss another interpretation of the growth-fragmentation equation in terms of
branching particle systems and many-to-one formulas, placing the results of sections 3
and 4 in context.

2. The Mellin transform and the growth-fragmentation equation

We observe first that, for any α ∈ R, the operator Lα fulfills a self-similarity
property. Specifically, for every c > 0, if we denote by ϕc(x) = cx the dilation function
with factor c, then for a generic f ∈ C∞c (0,∞), there is the identity

Lα(f ◦ ϕc) = c−α (Lαf) ◦ ϕc. (2.1)

As a consequence, if (µt)t≥0 is a solution to (1.2) for all f ∈ C∞c (0,∞) with initial
condition µ0 = δ1, and if µ̃t denotes the image of µt by the dilation ϕc, then (µ̃cαt)t≥0
is a solution to (1.2) for all f ∈ C∞c (0,∞) with initial condition µ̃0 = δc. For the sake of
simplicity, we shall therefore focus on the growth-fragmentation equation with initial
condition µ0 = δ1, since this does not induce any loss of generality.

Recall that the function κ has been introduced in (1.6); its domain is clarified by
the following result.

Lemma 2.1.

(i) For every q ≥ 0, κ(q) is well-defined with values in (−∞,∞]. The function κ is
convex, and we define dom κ = {q ≥ 0 : κ(q) <∞}.

(ii) For q ≥ 0, κ(q) <∞ if and only if
∫

[1/2,1)(1− y)qK(dy) <∞, and in particular
[2,∞) ⊆ dom κ.

(iii) For every function f in C∞c (0,∞), Lαf is a continuous function on (0,∞) and
is identically 0 in some neighborhood of 0. Furthermore, Lαf(x) = o(xq+α) as
x→∞ for every q ∈ dom κ, and thus in particular for q = 2.

Proof. (i–ii) First, the integral
∫

[1/2,1) (yq − 1 + q(1− y))K(dy) converges ab-
solutely thanks to (1.5), since yq−1+q(1−y) = O((1−y)2). It follows that κ(q) is
then well-defined with values in (−∞,∞) if and only if

∫
[1/2,1)(1−y)qK(dy) <∞,

and otherwise κ(q) =∞.
(iii) The first assertions are straightforward, and so we check only the last one.
Take q ∈ dom κ and recall from above that

∫
[1/2,1)(1 − y)qK(dy) < ∞. This

entails K([1/2, 1 − ε)) = o(ε−q) as ε → 0+. Since f has compact support in
(0,∞), we have for x sufficiently large that L0f(x) =

∫
[1/2,1) f(x(1 − y))K(dy),

and we easily conclude that L0f(x) = o(xq).

Doumic and Escobedo [11] studied certain growth-fragmentation equations with
homogeneous operators given by (1.3) for α = 0, and observed that the Mellin trans-
form plays an important role. In this direction, it is useful to introduce the notation
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hq : (0,∞) → (0,∞), hq(x) = xq, for the power function with exponent q, and recall
that the Mellin transform of a measurable function f : (0,∞)→ R is defined for z ∈ C
by

Mf(z) :=
∫ ∞

0
f(x)xz−1dx

whenever the integral in the right-hand side converges. It follows from Lemma 2.1 that
the Mellin transform of Lαf is well defined for all z < −2 − α, or more generally for
all z such that −z − α ∈ (dom κ)◦.

The role of κ in this study stems from the following lemma, which is easily checked
from elementary properties of the Mellin transform; see [11, §1.1] and [10, §12.3].

Lemma 2.2.

(i) Let q ∈ dom κ. Then,

Lαhq(x) = κ(q)hq+α(x), x > 0.

In particular, for α = 0, hq is an eigenfunction for L0 with eigenvalue κ(q).

(ii) For every q such that q − α ∈ (dom κ)◦ and every f ∈ C∞c (0,∞), there is the
identity

M(Lαf)(−q) = κ(q − α)Mf(−q + α).

3. The homogeneous case

Throughout this section, we assume that α = 0, and refer to this case as homo-
geneous. Recall that when a = 0 and the dislocation measure K fulfills the stronger
condition ∫

[1/2,1)
(1− y)K(dy) <∞, (3.1)

then we can express the operator L0 in the simpler form

Lc,Kf(x) := cxf ′(x) +
∫

[1/2,1)
(f(y | x)− f(x))K(dy) (3.2)

with c = b+
∫

[1/2,1)(1−y)K(dy). This situation was considered in depth by Doumic and
Escobedo [11], and most of the results of this section should be viewed as extensions of
those in [11] to the case when either a > 0, orK fulfills (1.5) but not (3.1). Furthermore,
the case c ≤ 0 was considered by Haas [13] using the same method that we employ
below.

3.1. Main results
The key observation in Lemma 2.2(i) that power functions hq are eigenfunctions of

the operator L0, underlies the analysis of the homogeneous case. Specifically, if we
knew that (µt)t≥0 solves (1.2) with f = hq for q ≥ 2, then the Mellin transform of µt,
Mt(z) = 〈µt, hz−1〉, would solve the linear equation

∂Mt(q + 1) = κ(q)Mt(q + 1). (3.3)
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Focussing for simplicity on the initial condition µ0 = δ1, so that M0(q) = 1, we would
find

Mt(q + 1) = exp(tκ(q)). (3.4)

In order to check that (3.4) is indeed the Mellin transform of a positive measure, we
define, for every ω ∈ dom κ, a new function by shifting κ:

Φω(q) := κ(ω + q)− κ(ω), q ≥ 0.

This is a smooth, convex function, and it has a simple probabilistic interpretation,
which will play a major role throughout. In this direction, recall first that a Lévy
process is a stochastic process issued from the origin with stationary and independent
increments and càdlàg paths. It is further called spectrally negative if all its jumps are
negative. If ξ := (ξ(t))t≥0 is a spectrally negative Lévy process with law P, then for
all t ≥ 0 and θ ∈ R, the Laplace exponent Φ, given by

E
[
exp(qξ(1))

]
= exp(Φ(q)),

is well defined (and finite) for all q ≥ 0, and satisfies the classical Lévy-Khintchin
formula

Φ(q) = aq + 1
2σ

2q2 +
∫

(−∞,0)
(eqx − 1 + qx1{|x|≤1})Υ(dx), q ≥ 0,

where a ∈ R, σ ≥ 0, and Υ is a measure (the Lévy measure) on (−∞, 0) such that∫
(−∞,0)

(1 ∧ x2)Υ(dx) <∞.

is in fact the Laplace exponent of a spectrally negative Lévy process; see [21, Theorem
8.1].

Lemma 3.1. Let ω ∈ dom κ. Then:

(i) the function Φω is the Laplace exponent of a spectrally negative Lévy process,
which we will call ξω = (ξω(t))t≥0.

(ii) for every t ≥ 0, there exists a unique probability measure ρ[ω]
t on (0,∞) with

Mellin transform given by

Mρ
[ω]
t (q + 1) :=

∫
(0,∞)

xqρ
[ω]
t (dx) = exp(tΦω(q)) , q ≥ 0. (3.5)

The family of measures has the representation ρ[ω]
t = P(exp(ξω(t)) ∈ ·), for t ≥ 0.

Proof. We prove both parts simultaneously, and focus first on the case ω = 2, where
we write Φ := Φ2. We can express Φ in the form

Φ(q) = aq2 +b′q+
∫

[1/2,1)
(yq−1+q(1−y))y2K(dy)+

∫
[1/2,1)

((1−y)q−1)(1−y)2K(dy)

(3.6)
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with
b′ = 3a+ b+

∫
[1/2,1)

(1− y)(1− y2)K(dy).

Let us denote by Λ(dx) the image of y2K(dy) by the map y 7→ x = ln y, and Π(dx)
the image of (1−y)2K(dy) by the map y 7→ x = ln(1−y). Then, thanks to (1.5), Λ is a
measure on [− ln 2, 0) with

∫
x2Λ(dx) <∞, and Π is a finite measure on (−∞,− ln 2],

and there are the identities∫
[1/2,1)

(yq − 1 + q(1− y))y2K(dy) =
∫

[− ln 2,0)
(eqx − 1 + q(1− ex))Λ(dx)

and ∫
[1/2,1)

((1− y)q − 1)(1− y)2K(dy) =
∫

(−∞,− ln 2]
(eqx − 1)Π(dx).

This shows that Φ is given by a Lévy-Khintchin formula, and therefore, Φ can be
viewed as the Laplace exponent of a spectrally negative Lévy process ξ = (ξ(t))t≥0
(see Chapter VI in [1] for background), i.e.,

E (exp(qξ(t))) = exp(tΦ(q)) , t, q ≥ 0.

We conclude that (3.5) does indeed determine a probability measure ρt which arises
as the distribution of exp(ξ(t)).

Finally, if ω 6= 2, we observe that the function Φω can be written
Φω(q) = Φ(q + ω − 2) − Φ(ω − 2), which implies that Φω is given by an Esscher
transform of Φ, and hence is also the Laplace exponent of a spectrally negative Lévy
process; see [16, Theorem 3.9] or [21, Theorem 33.1].

Remark 3.1. More generally, if ζ denotes a random time having an exponential
distribution, say with parameter k ≥ 0, which is further independent of ξ, then the
process

ξ†(t) =
{
ξ(t) if t < ζ
−∞ if t ≥ ζ

is referred to as a killed Lévy process. Note that if we set Φ†(q)) = k + Φ(q), then

E
[
exp(qξ†(t))

]
= exp(tΦ†(q)),

with the convention that exp(qξ†(t)) = 0 for t ≥ ζ. So Lemma 3.1 shows that whenever
κ(ω) ≤ 0, the function q 7→ κ(ω + q) can be viewed as the Laplace exponent of
a spectrally negative Lévy process killed at an independent exponential time with
parameter −κ(ω).

Recall from Lemma 2.1(ii) that 2 ∈ dom κ always; we will write ρt for ρ[2]
t . Since ρt

is guaranteed to exist, this collection of measures will play a particular role in the case
α = 0. We stress that in the cases α < 0 and α > 0, we will need to choose different
values of ω, and the notation ρt will then refer to a different distribution.

We point out the following property of the probability measures ρ[ω]
t , which essen-

tially rephrases Kolmogorov’s forward equation.
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Corollary 3.1. The family of probability measures (ρ[ω]
t )t≥0 defined in Lemma 3.1

depends continuously on the parameter t for the topology of weak convergence. Further,
for every g ∈ C∞c (0,∞), the function t 7→ 〈ρ[ω]

t , g〉 is differentiable with derivative
∂t〈ρ[ω]

t , g〉 = 〈ρ[ω]
t ,Ag〉, where

Ag(x) := x−ωL0(hωg)(x)− κ(ω)g(x) , x > 0.

Proof. Recall that every Lévy processes fulfills the Feller property and in partic-
ular, for every function ϕ ∈ C0(R), the map t 7→ E(ϕ(ξω(t))) is continuous. Taking
ϕ(x) = g(ex) with g ∈ C0(0,∞) yields the weak continuity of the map t 7→ ρ

[ω]
t .

Further, it is well-known that the domain of the infinitesimal generator of a Lévy
process contains C∞c (R) (see, e.g., Theorem 31.5 in Sato [21]), and it follows similarly
that for g ∈ C∞c (0,∞), the map t 7→ 〈ρ[ω]

t , g〉 is differentiable. To compute the
derivative, that is to find the infinitesimal generator, take q ≥ 0 and recall that
hq(x) = xq for x > 0. Then simply observe from (3.5) that

∂t〈ρt, hq〉 = Φω(q) exp(tΦω(q)) = 〈ρ[ω]
t ,Φω(q)hq〉 = 〈ρ[ω]

t , κ(q + ω)hq − κ(ω)hq〉.

Using Lemma 2.2(i), we can express

κ(q + ω)hq = h−ωκ(q + ω)hq+ω = h−ωL0(hωhq),

which shows that ∂t〈ρ[ω]
t , hq〉 = 〈ρ[ω]

t ,Ahq〉 for all q ≥ 0. That the same holds when hq
is replaced by a function g ∈ C∞c now follows from standard arguments, using linear
combinations of hq.

We would now like to invoke Lemma 3.1 to invert the Mellin transform (3.4),
observing that (using (3.5) with ρ = ρ[2])

exp(tκ(q)) = exp(tκ(2))〈ρt, xq−2〉,

and conclude that
µt(dx) = etκ(2)x−2ρt(dx).

However hq 6∈ C∞c (0,∞) and we cannot directly apply this simple argument. Nonethe-
less we claim the following.

Theorem 3.1. The equation (1.2), for f ∈ C∞c (0,∞) and with L = L0, has a unique
solution started from µ0 = δ1, given by

µt(dx) = etκ(2)x−2ρt(dx), t ≥ 0,

where ρt is the probability measure on (0,∞) defined by (3.5) for ω = 2.

Remark 3.2. In particular, the unique solution in Theorem 3.1 fulfills
〈µt, hq〉 = exp(tκ(q)), as we expected from (3.4). From a probabilistic perspective,
this does not come as a surprise. In [3], a homogeneous growth-fragmentation stochas-
tic process Z(t) = (Z1(t), Z2(t), . . . ) was constructed whose evolution is, informally
speaking, governed by the stochastic growth-fragmentation dynamics described in
the introduction. Using a spine technique, it may be shown (we omit the proof)
that the solution (µt)t≥0 has the representation 〈µt, f〉 = E

[∑∞
i=1 f(Zi(t))

]
, for any
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f for which the right-hand side is finite; and in [3, Theorem 1], it is proved that
E
[∑∞

i=1 Z
q
i (t)

]
= exp(tκ(q)) for all q ≥ 2. We offer a more detailed discussion of the

spine technique in section 6.

Proof of Theorem 3.1. It is straightforward to check that µt(dx) = etκ(2)x−2ρt(dx)
is indeed a solution. Specifically, we deduce from (3.5), that

〈µt, hq〉 = exp(tκ(2)) exp(tΦ(q − 2)) = exp(tκ(q)).

We thus see that (µt)t≥0 solves (1.2) with L = L0 and f = hq for every q ≥ 0, and it
follows from classical properties of the Mellin transform that this entails that (µt)t≥0
solves (1.2) more generally for all f ∈ C∞c (0,∞).

Conversely, given a solution (µt)t≥0 to (1.2) with µ0 = δ1, set

ρ̃t(dx) = e−tκ(2)x2µt(dx).

Take g ∈ C∞c (0,∞) and define f(x) = x2g(x) for x > 0, so f ∈ C∞c (0,∞). Then we
have 〈ρ̃t, g〉 = e−tκ(2)〈µt, f〉 and

∂t〈ρ̃t, g〉 = −κ(2)〈ρ̃t, g〉+ e−tκ(2)〈µt,L0f〉,

that is,
∂t〈ρ̃t, g〉 = 〈ρ̃t,Ag〉, (3.7)

with
Ag(x) = x−2L0f(x)− κ(2)g(x),

as in the notation of Corollary 3.1. We can thus interpret (3.7) as Kolmogorov’s forward
equation for the infinitesimal generator of the Feller process (exp(ξ(t)))t≥0. This will
in turn enable us to identify ρ̃t = ρt.

To be precise, examining the proof of [12, Proposition 4.9.18], we see that (3.7) for
all g ∈ C∞c (0,∞) has at most one solution (in the sense of a vaguely right-continuous
collection of measures (ρ̃t)t≥0) so long as the image of C∞c (0,∞) by λ−A is separating
(see [12, p. 112]) for each λ > 0. Since A is the generator of a Feller process and
C∞c (0,∞) is a core (cf. Theorem 31.5 in Sato [21]), we know that the image of C∞c (0,∞)
by λ − A is a dense subset of C0, and this implies that it is separating. If (ρ̃t)t≥0 is
a collection of measures solving (3.7), then for any g ∈ C∞c , the function t 7→ 〈ρ̃t, g〉
is right-continuous. Hence, the solution of (3.7) restricted to C∞c is unique, and this
transfers to (1.2).

3.2. Some properties of solutions
We next present some properties of the solution identified in Theorem 3.1, by means

of translating known results on Lévy processes.
We first point out that, depending on whether (3.1) holds and a = 0, the support

of the solution µt is bounded or not. Specifically, if a = 0 and (3.1) holds, we set

d := b+
∫

[1/2,1)
(1− y)K(dy),

and otherwise d =∞. It is easy to verify that d = limq→∞ q−1κ(q).
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Corollary 3.2. If a = 0 and (3.1) holds, then for every t > 0, edt is the supremum of
the support of µt, i.e., we have for every ε > 0,

µt((etd,∞)) = 0 and µt((etd − ε, etd]) > 0.

Proof. The spectrally negative Lévy process ξ = ξ2, arising in Lemma 3.1, has
bounded variation with drift coefficient d exactly when the conditions of the result hold,
and it is then well-known that td is the maximum of the support of the distribution
of ξ(t). Therefore we have ρt((etd,∞)) = 0 and ρt((etd − ε, etd]) > 0, and our claim
follows from Theorem 3.1.

In the case when the assumptions of Corollary 3.2 are not fulfilled, we have the
following large deviations estimates for the tail µ̄t(x) := µt((x,∞)) of µt. Recall that
κ is a convex function, and observe that limq→+∞ κ′(q) = +∞ when either a > 0 or
(3.1) fails. Thus for every r sufficiently large, the equation κ′(q) = r has a unique
solution which we denote by θ(r), and the Legendre-Fenchel transform of κ is given by

κ∗(r) := sup
q>0
{rq − κ(q)} = rθ(r)− κ(θ(r)).

Corollary 3.3. Suppose that a > 0 or (3.1) fails. Then for every r > 0 sufficiently
large, we have

lim
t→∞

t−1 ln µ̄t(etr) = −κ∗(r).

Proof. This follows easily from the identity 〈µt, hq〉 = exp(tκ(q)) by adapting the
classical arguments of Cramér and Chernoff; see, for instance, Theorem 1 in Biggins
[7].

The estimate of Corollary 3.3 can easily be reinforced by using the local central limit
theorem. Here is a typical example (compare with Theorem 1.3 in [11]).

Corollary 3.4. Suppose that a > 0 or (3.1) fails, and further that κ′(q) < 0 for some
q. Then θ(0) is well-defined, 0 < κ′′(θ(0)) <∞, and for every f ∈ Cc, we have

〈µt, f〉 ∼
etκ(θ(0))√

2πtκ′′(θ(0))

∫ ∞
0

f(x)xθ(0)−1dx.

Proof. The first assertion about the existence of θ(0) and κ′′(θ(0)) are immediate
from the convexity of κ and the fact that lim+∞ κ = +∞.

The function Φ̃(q) := κ(q + θ(0)) − κ(θ(0)) = Φ(q + θ(0)) − Φ(θ(0)) is the Laplace
exponent of a spectrally negative Lévy process (ξ̃(t))t≥0 which is centered and has
finite variance κ′′(θ(0)). Further, we see from Esscher transform and Theorem 3.1 that

µt(dx) = etκ(θ(0))xθ(0)P(exp(ξ̃(t)) ∈ dx).

Our claim then follows readily from the local central limit theorem for the Lévy process.

Corollary 3.5. If a > 0 or the absolutely continuous component of K(dy) has an
infinite total mass, then µt is absolutely continuous for every t > 0.

Proof. Using Sato [21, Theorem 27.7 and Lemma 27.1], it follows from the assump-
tions of the statement that the one-dimensional distributions of the Lévy process ξ(t)
are absolutely continuous for every t > 0. Our claim follows from the representation
in Theorem 3.1.
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4. The self-similar case

We now turn our attention to the growth-fragmentation equation (1.2) for L = Lα
given by (1.4) and α 6= 0. We first point out that the function κ is non-increasing if
and only if a = 0, the dislocation measure K fulfills (3.1), and

b+
∫

[1/2,1)
(1− y)K(dy) ≤ 0.

In this case, the operator Lα can be expressed in the form (1.3) with c ≤ 0, and (1.2)
is then a pure fragmentation equation as studied by Haas [13]. To avoid duplication
of existing literature, this case will be implicitly excluded hereafter.

Recall the notation hq(x) = xq for x > 0. In the self-similar case, power functions
are no longer eigenfunctions of the operator Lα; however, there is the simple relation

Lαhq = κ(q)hq+α, q ∈ dom κ; (4.1)

see Lemma 2.2(i). Hence, if (1.2) applies to power functions, the linear equation (3.3)
for the Mellin transformMt(z) = 〈µt, hz−1〉 in the homogeneous case has to be replaced
by the system

∂tMt(1 + q) = κ(q)Mt(1 + q + α). (4.2)

We make the fundamental assumption, that

inf
q≥0

κ(q) < 0, (4.3)

which is implicitly enforced throughout this section. The role and the importance
of (4.3) shall become clear in the sequel. Recall that κ is a convex function on R,
and is ultimately increasing, since we are excluding the case when κ is non-increasing
throughout section 4. Hence, condition (4.3) ensures the existence of a unique ω+ ∈ R
with

κ(ω+) = 0 and κ′(ω+) > 0. (4.4)

We refer to ω+ as the Malthusian parameter.
The sign of the scaling parameter α plays a crucial role, and we shall study the two

cases separately, even though some ideas are similar.

4.1. The case α < 0
We now focus on the case α < 0. We start by observing that the existence of a

Malthusian parameter enables us to view (4.2) as a closed system for an arithmetic
sequence, and thus to solve it.

Lemma 4.1. Consider a sequence of functions M•(1 + q) : [0,∞) → (0,∞) for
q = ω+ − kα, k = −1, 0, 1, . . ., with M0(1 + q) = 1. Suppose that (4.2) and (4.3) hold
and recall that ω+ is the Malthusian parameter defined by (4.4). Then Mt(1 +ω+) = 1
for all t ≥ 0 and for k = 1, 2, . . ., we have

Mt(1 + ω+ − kα) = 1 +
k∑
`=1

κ(ω+ − αk) · · ·κ(ω+ − α(k − `+ 1))
`! t`.
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Proof. The equation (4.2) applied to the Malthusian exponent ω+ implies that the
function t 7→ Mt(1 + ω+) is constant. We can then solve (4.2) for q = ω+ − αk and
k = 1, 2, . . . by induction in order to obtain the given formula.

In comparison with the homogeneous case, Lemma 4.1 is a much weaker result than
(3.4), as we are not able to compute the whole Mellin transform of a solution, but merely
its moments for orders forming an arithmetic sequence. There is hence an additional
crucial issue: it does not suffice to find a family of measures having the desired
moments, but also to ensure that the moment problem is determining. It turns out
that moment calculations which were performed in [6] for self-similar Markov processes
enable us to solve the moment problem in Lemma 4.1, and check that this indeed yields
a solution to (1.4). Similar calculations also point at a rather surprising result, namely
that the self-similar growth-fragmentation permits spontaneous generation!

Theorem 4.1. Assume (4.3) and α < 0.

(i) For every t ≥ 0, there exists a unique measure µt on (0,∞) such that
〈µt, hω+

〉 = 1 and for every integer k ≥ 1,

〈µt, hω+−kα〉 = 1 +
k∑
`=1

κ(ω+ − αk) · · ·κ(ω+ − α(k − `+ 1))
`! t`.

In particular, µ0 = δ1 and the family (µt)t≥0 solves (1.2) for all f ∈ C∞c (0,∞)
when L = Lα is given by (1.4).

(ii) For every t > 0, there exists a unique measure γt on (0,∞) such that 〈γt, hω+
〉 = 1

and

〈γt, hω+−kα〉 = tk
κ(ω+ − α) · · ·κ(ω+ − αk)

k! for every integer k ≥ 1.

If we further set γ0 ≡ 0, then the family (γt)t≥0 solves (1.2) for all f ∈ C∞c (0,∞)
when L = Lα is given by (1.4).

Proof. (i) Let us define Φ+ := Φω+ = κ(·+ω+), which, as we saw in Lemma 3.1, is
the Laplace exponent of the Lévy process ξ+ := ξω+ . Observe that
Φ′

+
(0) = κ′(ω+) > 0, so this Lévy process has a strictly positive and finite first

moment.
Proposition 1 in [6] then ensures, for every t > 0, the existence of a unique
probability measure ρt on (0,∞), such that for every integer k ≥ 1,

〈ρt, h−αk〉 = 1 +
k∑
`=1

κ(ω+ − αk) · · ·κ(ω+ − α(k − `+ 1))
`! t` ,

so that in particular ρ0 = δ1. Thus we may set µt(dx) = x−ω+ρt(dx), and then
〈µt, hω+−kα〉 is given as in the statement for every integer k ≥ 0. That this
determines µt derives from the uniqueness of ρt.
Now, using (4.1), we immediately check that 〈µt, hω+−kα〉 satisfies (4.2). It then
follows that (µt)t≥0 solves (1.2) for every f ∈ C∞c (0,∞) (recall that the probability
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measure ρt is determined by its entire moments). Finally, the map t 7→ 〈ρt, h−αk〉
is continuous, and we deduce that (ρt)t≥0 is vaguely continuous (using again the
fact that ρt is determined by its moments 〈ρt, h−αk〉 for k ∈ N). Hence the same
holds for (µt)t≥0.

(ii) Recall from above that Φ+ = κ(ω+ + ·) is the Laplace exponent of a spectrally
negative Lévy process which has strictly positive and finite first moments. Propo-
sition 1 in [6] ensures for every t > 0 the existence of a unique probability measure
πt on (0,∞) such that its moments are given by

〈πt, h−αk〉 = tk
Φ+(−α) · · ·Φ+(−αk)

k! = tk
κ(ω+ − α) · · ·κ(ω+ − αk)

k! ,

for k = 1, 2, . . . , and this determines πt. It follows immediately that (πt)t≥0 is
vaguely continuous (recall that π0 = 0).
We then define for t > 0

γt(dx) = x−ω+πt(dx) , x > 0,

so
〈γt, hω+−kα〉 = tk

κ(ω+ − α) · · ·κ(ω+ − αk)
k! .

Then (4.1) entails that for every integer k ≥ 1, there is the identity

∂t〈γt, hω+−kα〉 = tk−1κ(ω+ − α) · · ·κ(ω+ − αk)
(k − 1)!

= κ(ω+ − αk)〈γt, hω+−(k−1)α〉 = 〈γt,Lhω+−kα〉,

and the conclusion follows just as in (i).

Theorem 4.1(ii) entails that uniqueness of the solution fails when one only requires
(1.4) to be fulfilled for all f ∈ C∞c (0,∞), which contrasts sharply with the results of
Haas [13] for the pure-fragmentation equation. We conjecture that the solution µt
given in Theorem 4.1(i) is minimal, in the sense that if (µ̃t)t≥0 is another solution with
the same initial condition µ̃0 = δ1, then µt ≤ µ̃t for every t > 0. We also stress that
uniqueness of the solution can be restored by requiring (1.2) to hold for the functions
hq with q ≥ ω+ + α; see Lemma 4.1 and Theorem 4.1(i).

We now present a different approach to Theorem 4.1. In the homogeneous case α = 0,
we saw in the preceding section that the equation (1.4) bears a close relationship with
certain exponential Lévy processes. It turns out that in the self-similar case with α < 0,
the vital connection is with positive self-similar Markov processes, and is made via the
Lamperti transformation which associates these with the class of Lévy processes. We
first provide some background in this area.

A positive self-similar Markov process (pssMp) with self-similarity index γ ∈ R
is a standard Markov process R = (Rt)t≥0 with associated filtration (Ft)t≥0 and
probability laws (Px)x∈(0,∞), on [0,∞], which has 0 and ∞ as absorbing states and
which satisfies the scaling property, that for every x, c > 0,

the law of (cRtc−α)t≥0 under Px is Pcx.
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Here, we mean “standard” in the sense of [8], which is to say, (Ft)t≥0 is a complete,
right-continuous filtration, and R has càdlàg paths and is strong Markov and quasi-
left-continuous.

In the seminal paper [17], Lamperti describes a one-to-one correspondence between
pssMps and (possibly killed) Lévy processes, which we now outline. It may be worth
noting that we have presented a slightly different definition of pssMp from Lamperti;
for the connection, see [22, §0].

Let S(t) =
∫ t

0 (Ru)−γ du. This process is continuous and strictly increasing until R
reaches zero. Let (T (s))s≥0 be its inverse, and define

ηs = logRT (s) s ≥ 0.

Then η := (ηs)s≥0 is a (possibly killed) Lévy process started at position log x, possibly
killed at an independent exponential time; the law of the Lévy process and the rate
of killing do not depend on the value of x. The real-valued process η with probability
laws (Py)y∈R is called the Lévy process associated to R, or the Lamperti transform of
R.

An equivalent definition of S and T , in terms of η instead of R, is given by taking
T (s) =

∫ s
0 exp(γηu) du and S as its inverse. Then,

Rt = exp(ηS(t))

for all t ≥ 0, and this shows that the Lamperti transform is a bijection. A useful
fact is that, as a consequence of the definitions we have just given, it holds that
dt = exp(−γηS(t)) dS(t).

Most of the literature on pssMps (including Lamperti’s original paper) assumes that
γ > 0, and much of it is also given for γ = 1. Indeed it is easy to change the index
of self-similarity. If R is a pssMp of index γ and corresponding to the Lévy process
η, then, for any γ′ ∈ R, the process Rγ′ = (Rγ

′

t )t≥0 is a pssMp with index γ/γ′,
corresponding to the Lévy process γ′η. It is also useful to note that the time-changes
appearing in the Lamperti transformation are a.s. equal for R and Rγ

′ . We should
point out that the case γ = 0 is special, since in this case the time-change does not
have any effect, and the pssMps of index 0 are just exponential Lévy processes.

Note that, if the Lévy process process η is killed at time ζ, then we define Rt = 0
for t ≥ T (ζ) if γ ≥ 0, and Rt = +∞ for t ≥ T (ζ) if γ < 0.

Recall Lemma 3.1, and define Φ+ := Φω = κ(·+ω+), which is the Laplace exponent
of the spectrally negative Lévy process ξ+ := ξω+ . Let us denote by X+ the pssMp
with index −α associated to ξ+ by the Lamperti transformation. Note that, because
ξ+ has positive mean, the process X+ never reaches the absorbing boundaries 0 or
+∞. We define the measure ρt to be the distribution of X+(t) under P1, that is, the
probability measure on (0,∞) defined by

〈ρt, f〉 = E1(f(X+(t))) , f ∈ C0(0,∞)

and give first the following analogue of Corollary 3.1:

Lemma 4.2. The family of probability measures (ρt)t≥0 depends continuously on the
parameter t for the topology of weak convergence. Further, for every g ∈ C∞c (0,∞), the
function t 7→ 〈ρt, g〉 is differentiable with derivative ∂t〈ρt, g〉 = 〈ρt,A(α)

+
g〉, where

A(α)
+
g(x) := x−ω+Lα(hω+

g)(x) , x > 0.
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Proof. The first assertion follows easily from the Feller property of self-similar
Markov processes; see Theorem 2.1 in Lamperti [17] and the remark on page 212.
In order to establish the second, we work with the Lévy process ξ+ The exponential
Lévy process exp(ξ+(·)) is a Feller process in (0,∞), and the same calculation as in
the proof of Corollary 3.1 shows that its infinitesimal generator A+ is given by

A+g(x) = x−ω+L0(hω+
g)(x) , g ∈ C∞c (0,∞).

According to Dynkin’s formula (see, e.g., Proposition 4.1.7 of [12]), for every
g ∈ C∞c (0,∞), the process

g(exp(ξ+(t)))−
∫ t

0
A+g(exp(ξ+(s)))ds

is a martingale. Recall that by definition, X+ arises as the transform of exp(ξ+(·))
by the time substitution S, which is given as the inverse of the additive functional∫ t

0 h
−1
α

(
exp(ξ+(s)

)
ds, and we have the identity

g(X+(t))−
∫ S(t)

0
A+g(exp(ξ+(s)))ds = g(X+(t))−

∫ t

0
hα(X+(s))A+g(X+(s))ds.

A priori, the time-substitution above changes a martingale into a local martingale.
However, using Lemma 2.1(iii) and the fact that α < 0, we see that A(α)

+
g := hαA+g

is bounded, and it follows that the process

g(X+(t))−
∫ t

0
A(α)

+
g(X+(s))ds

is a true martingale. Taking expectations, we arrive at

〈ρt, g〉 − g(1) =
∫ t

0
〈ρs,A(α)

+
g〉ds,

and our claim follows.

The connection with solutions of the growth-fragmentation equation is the following:

Corollary 4.1. Let
µ̃t = h−ω+

ρt, t ≥ 0.

Then, (µ̃t)t≥0 is equal to the solution (µt)t≥0 of the growth-fragmentation equation
appearing in Theorem 4.1(i).

Proof. We deduce immediately from Lemma 4.2 that for every f ∈ C∞c

∂t〈µ̃t, f〉 = ∂t〈ρt, h−1
ω+
f〉 = 〈ρt, h−1

ω+
Lαf〉 = 〈µ̃t,Lαf〉 ,

that is, the family
(
µ̃t
)
t≥0 solves (1.2) with L = Lα. That µt coincides with the

measure appearing in Theorem 4.1(i), and that the notation ρt for the distribution
of X+(t) is consistent with that used in the proof of Theorem 4.1(i), follows from
Proposition 1 of [6].
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This approach could also be adapted to prove the existence of (γt)t≥0 using the
process X+(t) started from zero, and indeed, this will be our method for the case
α > 0 in section 4.2.
We conclude the section by offering some results on the asymptotic behaviour of the
solution (µt)t≥0 given by the previous theorem.

Our first result in this direction indicates that, thanks to the self-similarity property
(2.1) of the equation (1.2), the solution starting from zero given above can be used to
describe the asymptotic behaviour of µt as t→∞.

Proposition 4.1. For any f ∈ Cb(0,∞),∫
f(t−1/|α|z)zω+µt(dz)→

∫
f(z)zω+γ1(dz).

Proof. Since κ′(ω+) > 0, it is possible to extend the definition of X+ in order to
allow it to start from X+(0) = 0, such that it is a Feller process on the state space
[0,∞); this is a consequence of [5, Theorem 1]. For x ≥ 0, we will denote by Px the
law of the process with X+(0) = x.

It then follows from the scaling property that Ex[f(t1/αX+(t))] = Ext1/α [f(X+(1))],
and then the convergence

Ex[f(t1/αX+(t))]→ E0[f(X+(1))], t→∞,

follows from the scaling property of X+ .
Finally, we know from the reference [6], which we used in the proof of Theorem 4.1,

that the measures xω+µt(dx) and xω+γt(dx) are, respectively, equal to P1(X+(t) ∈ dx)
and P0(X+(t) ∈ dx). Our claim follows immediately.

We remark that the statement of the proposition can easily be extended to solutions
based on (µt) whose initial value is a measure with compact support in (0,∞).
Suppose now that the equation κ(q) = 0 has two solutions, ω− and ω+, with ω− < ω+.
Then we can say a little more. Let X− be the (−α)-pssMp associated with the Lévy
process ξ− := (ξ−(t))t≥0 having Laplace exponent Φ− := Φω− . Recall that we say
the Lévy process ξ− is lattice if, for some r ∈ R, the support of ξ−(1) a.s. lies in rZ;
otherwise, we say that ξ− is non-lattice. If we define the random variable

I =
∫ ∞

0
e|α|ξ−(t) dt,

then it is known from [19, Lemma 4] that, so long as ξ− is non-lattice,

lim
t→∞

t(ω+−ω− )/|α|P0(I > t) = C,

for some 0 < C <∞. We obtain from Haas and Rivero [14] the following result.

Proposition 4.2. Let f ∈ C0(0,∞) and assume that ξ− is non-lattice. Then,∫
xω− f(t−1x|α|)µt(dx)

P(I > t) →
∫
f(x) ν(dx), t→∞,

where ν is the distribution of the random variable J(ω+−ω− )/|α| in equation (13) of [14].
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Proof. As remarked in the proof of Proposition 4.1, the equation

xω+µt(dx) = P1(X+(t) ∈ dx)

holds as an identity of probability measures, where X+ is the (−α)-pssMp correspond-
ing to the Lévy process ξ+ with Laplace exponent Φ+ = Φω+ . We now wish to use the
‘Esscher transform’ for pssMps, which is essentially obtained by standard arguments
from the Esscher transform of Lévy processes given in [16, Theorem 3.9] (see, for
instance, the discussion around [9, Theorem 14] for an application in the context of
pssMps.) This allows us to perform a change of measure to switch from the process
X+, related to the Laplace exponent Φ+, to the process X−, related to the Laplace
exponent Φ− = Φ+(·+ ω− − ω+). Specifically, we have:

xω−µt(dx) = xω−−ω+xω+µt(dx) = xω−−ω+P1(X+(t) ∈ dx) = P1(X−(t) ∈ dx),

for x > 0. The process ξ− (which corresponds to X−) is a Lévy process with non-
monotone paths and which satisfies the conditions of Haas and Rivero [14, Theo-
rem 1.6]. Applying this theorem gives the result.

4.2. The case α > 0
In the case α > 0, the equation (4.2) for the Mellin transform is unfortunately much

less useful, for the following reasons. Firstly, the analogue of Lemma 4.1 would require
to assume that 〈µt, hq〉 < ∞ for all q sufficiently negative. Roughly speaking, this
would force the scarcity of small particles, and this phenomenon only occurs for a very
restricted class of dislocation measures K (informally, dislocations should not generate
too many small particles, and in particular the total intensity of dislocations must be
finite). Secondly, even if one were able to get an expression for the (negative) moments
〈µt, hω+−kα〉 with k ∈ N, this moment problem would be in general indeterminate, and
the arguments used in the preceding section would thus collapse.

Nonetheless, we have just seen from Lemma 4.2 that, for α < 0, self-similar growth-
fragmentation equations have a close connection with certain self-similar Markov pro-
cesses, and using the intuition that we gained, we are able to offer a very similar set of
results when α > 0. Recall that κ : [0,∞) → (−∞,∞] is a convex function, and that,
since we are assuming (4.3), we may pick ω > 0 such that k := −κ(ω) > 0. Then, the
function

Φ†(q) := Φω(q) + k = κ(ω + q) , q ≥ 0,

is the Laplace exponent of a spectrally negative Lévy process killed at an independent
exponential time with parameter k, say ξ†, and we denote by X† the (−α)-pssMp
associated with ξ† via the Lamperti transformation. Note that X† hits the absorbing
state +∞ by a jump.

We write ρt for the sub-probability measure on (0,∞) induced by the distribution
of X†(t) and study its properties in the following result, which mirrors Lemma 4.2.

Lemma 4.3. Suppose (4.3) holds and α > 0. Then we have, in the notation above:

(i) E(supt≥0 X†(t)q) <∞ for all 0 ≤ q < ω+ − ω.

(ii) E
[∫ ∞

0
X†(u)p du

]
<∞ for all 0 < p− α < ω+ − ω.
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(iii) The family (ρt)t≥0 depends continuously on the parameter t for the topology
of weak convergence. For every g ∈ C∞c (0,∞), the function t 7→ 〈ρt, g〉 is
differentiable with derivative ∂t〈ρt, g〉 = 〈ρt,A

(α)
† g〉, where

A(α)
† g(x) := x−ωLα(hωg)(x) , x > 0.

(iv) (ρt)t≥0 solves the above equation also for g(x) = xq with 0 < q < ω+ − ω.

Proof. (i) From the very construction of X†, the overall supremum
X̄† := supt≥0 X†(t) is given by X̄† = exp(ξ̄†), with ξ̄† := supt≥0 ξ†(t). We
infer from Corollary VII.2 in [1] that ξ̄† has the exponential distribution with
parameter ω+ −ω (which is the positive root to the equation Φ†(q) = 0), and our
claim follows.

(ii) We begin with the following calculation, using the discussion of pssMps in the
preceding section. Recall that S is the time-change appearing in the Lamperti
transform relatingX† and ξ†, and that there is the identity dS(t) = exp(αξ†(t))dt.
We have therefore∫ ∞

0
X†(u)p du =

∫ ∞
0

epξ†(S(u)) du

=
∫ ∞

0
e(p−α)ξ†(S(u)) dS(u) =

∫ ∞
0

e(p−α)ξ†(s) ds.

But now we can consider the expectation:

Ex
[∫ ∞

0
X†(u)p du

]
= xp−αE

[∫ ∞
0

e(p−α)ξ†(s) ds
]

=


xp−α

κ(p− α+ ω) , if κ(p− α+ ω) < 0,

∞, otherwise.

We complete the proof by recalling the definition of ω+ .

(iii) Just as in the proof of Lemma 4.2, the first assertion follows from the Feller
property of self-similar Markov processes, and the process

Nt := g(X†(t))− g(1)−
∫ t

0
A(α)
† g(X†(s))ds (4.5)

is a local martingale for every g ∈ C∞c (0,∞). We will show that

E
(
sups≤t|Ns|

)
<∞, t ≥ 0,

which implies that N is a true martingale; see [18, Theorem I.51].
Since g is bounded, certainly sups≤t|g(X†(s)) − g(x)| is in L1(P). In constrast
to Lemma 4.2, the function A(α)

† g may be unbounded for α > 0; however, we do
know from Lemma 2.1(iii) that A(α)

† g is zero on some neighborhood of 0 and, for
any q ∈ dom κ, fulfills A(α)

† g = o(xq+α−ω) as x→∞.
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We let ω < q < ω+ and keep it fixed for the rest of the proof. For some K > 0
we then have

E
[
sup
u≤t

∣∣∣∣∫ u

0
A(α)
† g(X†(s)) ds

∣∣∣∣] ≤ E
[∫ t

0

∣∣A(α)
† g(X†(s))

∣∣ds] (4.6)

≤ t sup
[0,K]
|A(α)
† g|+ E

[∫ t

0
X†(s)q+α−ω

1{X†(s)>K} ds
]
.

Setting p = q + α− ω in part (ii), we see that the right-hand side is finite.
We have thus shown that N is a true martingale, and

E
(∫ t

0
|A(α)
† g(X†(s))|ds

)
<∞.

Taking expectations in (4.5) and applying Fubini’s theorem, we obtain

〈ρt, g〉 − g(1) =
∫ t

0
〈ρs,A

(α)
† g〉ds,

which completes the proof.

(iv) This part is proved by setting g(x) = xq in the previous part, as follows. Using
the Markov property one sees immediately that the process

Mt = eqξ†(t) − 1− κ(ω− + q)
∫ t

0
eqξ†(s) ds, t ≥ 0,

is a martingale in the filtration of ξ† for every q ≥ 0. Applying the same reasoning
with the time-change as in Lemma 4.2, it follows that

Nt = X†(t)q − 1− κ(ω + q)
∫ t

0
X†(s)q+α ds, t ≥ 0,

is a local martingale. (For our choice of g, we have A(α)
† g(x) = κ(ω + q)xq+α, so

this is consistent with the proof of part (iii).) We observe that

sup
t≥0
|Nt| ≤ 1 + sup

t≥0
X†(t)q − κ(ω + q)

∫ ∞
0

X†(s)q+α ds.

We now apply directly parts (i) and (ii) of this lemma in order to show that
E[supt≥0|Nt|] <∞. This is a sufficient criterion forN to be a uniformly integrable
martingale (see [18, Theorem I.51]), and the remainder of the proof follows in the
same way as in part (iii).

We can then repeat the calculations which were made after the proof of Lemma 4.2,
and arrive at:

Corollary 4.2. Suppose that (4.3) holds. Define µt = h−ωρt, for t ≥ 0. Then
the vaguely continuous family of measures (µt)t≥0 solves (1.2) with L = Lα both for
f ∈ C∞c (0,∞) and for f = hq, for any ω < q < ω+.
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An interesting contrast with the case α < 0 is that we do not show that µt solves
(1.2) for all power functions.
We now give the basis of a solution to the growth-fragmentation equation starting from
the zero measure; in this case, the solution should be interpreted, not as spontaneous
generation from infinitely small masses, but as starting from infinite mass and breaking
apart instantaneously. Recall that the equation κ(q) = 0 has at most two solutions.
More precisely, we have already seen that there is always a unique solution ω+ with
κ′(ω+) > 0 (this is the Malthusian exponent defined by (4.4)). When a second solution,
say ω− , exists, then ω− < ω+ and κ′(ω−) ∈ [−∞, 0). We give the results under the
assumptions:

the equation κ(q) = 0 with q ≥ 0 has two solutions ω− < ω+ , and κ′(ω−) > −∞
(4.7)

which is thus stronger than (4.4). We write ξ− for the spectrally negative Lévy process
with Laplace exponent Φ−(q) := Φω− = κ(q + ω−), and then X− for the pssMp with
index −α associated to ξ− by Lamperti’s transform.

Lemma 4.4. Assume that (4.7) holds. Then there exists a càdlàg process (X (t))t>0
with values in (0,∞) and limt→0+ X (t) =∞ a.s. such that:

• For every s > 0, conditionally on X (s) = x, the shifted process (X (s + t))t≥0
has the law Px of the pssMp X− started from x.
• For all 0 < ε < (ω+ − ω−)/α, there is c(ε) <∞ such that

E
(
X (t)α(1−ε)

)
= c(ε)tε−1, t > 0.

Proof. Let Y denote the pssMp with self-similarity index α associated to the Lévy
process −ξ−, so Y has the same law as 1/X−. Because

E(−ξ−(1)) = −Φ′−(0+) := m ∈ (0,∞),

[5] shows that 0+ is an entrance boundary for Y , i.e., there exists a càdlàg process
(Y(t))t>0 with values in (0,∞) and limt→0+ Y(t) = 0 a.s., such that, for every s > 0,
conditionally on Y(s) = y, the shifted process (Y(s+ t))t≥0 has the law Y started from
y. Our first claim follows by setting X (t) = 1/Y(t).

Further, according to Theorem 1 in [5], there is the identity

E
(
Yα(ε−1)(t)

)
= 1
αm

E
(
I−1(t/I)ε−1)

where I :=
∫∞

0 exp(αξ−(s))ds. It thus follows

E
(
Xα(1−ε)(t)

)
= c(ε)tε−1

where c(ε) = E (Iε) /αm ∈ (0,∞].
For every 0 < ε < (ω+ − ω−)/α, the Laplace exponent q 7→ Φ−(αq) of αξ− fulfills

Φ−(αε) < 0, and according to Lemma 3 in Rivero [20], this ensures that E (Iε) <∞.

We next further require that ω− ∈ (dom κ)◦. This is only a little stronger than the
condition κ′(ω−) > −∞, which is necessary and sufficient for X to exist. We write A(α)

−

for the operator A(α)
† given in Lemma 4.3(iii) for ω = ω− , and deduce the following.
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Corollary 4.3. Assume that (4.7) holds and that ω− ∈ (dom κ)◦. For t > 0, write πt
for the distribution of X (t). Then, for every f ∈ C∞c (0,∞), we have∫ t

0

∣∣〈πs,A(α)
− f〉

∣∣ ds <∞,
and there is the identity

〈πt, f〉 =
∫ t

0
〈πs,A(α)

− f〉ds.

Proof. Recall from Lemma 4.3(iii) that hω−A
(α)
− f = Lα(hω− f), so Lemma 2.1(iii)

and the assumption that ω− − αε ∈ dom κ for some ε > 0 entail

A(α)
− f(x) = o

(
x−ω−+α+ω−−αε

)
= o
(
xα(1−ε)

)
.

It now follows from the preceding lemma that |〈πs,A(α)
− f〉| ≤ C(sε−1 + 1), where C is

a finite constant depend ending only on f and ε. Our first claim follows.
Recall then from the proof of Lemma 4.3(iii) that

f(X−(t))−
∫ t

0
A(α)
− f(X−(s))ds , t ≥ 0

is a local martingale, and thus, thanks to Lemma 4.4, so is

f(X (t+ s))− f(X (s))−
∫ t

0
A(α)
− f(X (r + s))dr , t ≥ 0

for all s > 0. Since

E
(∫ t

0
|A(α)
− f(X (r + s))|dr

)
=
∫ t+s

s

|〈πr,A(α)
− f〉|dr <∞,

the above process is actually a true martingale, and taking expectations, we arrive at
the identity

〈πt, f〉 − 〈πs, f〉 =
∫ t

s

〈πr,A(α)
− f〉dr.

With the observation above, we can let s → 0+, and since 〈πs, f〉 → 0 thanks to
Lemma 4.4, we conclude that

〈πt, f〉 =
∫ t

0
〈πr,A(α)

− f〉dr.

We conclude this section with the following corollary, which demonstrates the ex-
istence of a solution to the growth-fragmentation equation started from zero mass.

Corollary 4.4. Suppose that the hypotheses of Corollary 4.3 are fulfilled. Let
γt(dx) = x−ω−πt(dx) for t > 0, and set γ0 ≡ 0. Then, the family (γt)t≥0 solves
(1.2) for all f ∈ C∞c (0,∞) when L = Lα is given by (1.4).
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5. Explosion of the stochastic model

In this section, we discuss the behaviour of the stochastic growth-fragmentation
process in a simplified setting. In particular, we point out that, when the Malthusian
hypotheses from section 4 do not hold, this stochastic model may experience explosion,
in the sense that some arbitrarily small compact sets contain infinitely many particles
after a finite time.

Assume that the measure K is a probability measure on [1/2, 1) which is not equal
to δ 1

2
, and denote by Y a random variable with law K. Choose c ∈ R such that

E[log(1− Y )] + c < 0 < E[log Y ] + c.
We now set up the stochastic model. Let U =

⋃
n≥0{L,R}n, where {L,R}0 = {∅}.

We view this as a binary tree, as follows. The root node ∅ gives rise to child nodes
L and R; the former then has children LL and LR, while the latter has children RL
and RR, and so on. We introduce the ancestry relationship ‘�’ by saying that, for
individuals u, u′ ∈ U , u � u′ if and only if there exists u′′ ∈ U such that uu′′ = u′; we
also define the strict relation u ≺ u′ to mean that u � u′ but u 6= u′.

Let V = {L,R}N. This is the set of infinite lines of descent, or rays, in U . For
instance, LLRRLRLRRRRL · · · ∈ V traces a line of descent starting at individual ∅,
and proceeding to L, then LL, then LLR, and so on. If u ∈ U and v ∈ V, we say (by
slight abuse of notation) that u ≺ v if and only if there exists v′ ∈ V such that uv′ = v.

To each u ∈ U , we assign, independently of everything else, a lifetime Tu which
is has an exponential distribution of rate 1, and an offspring distribution Yu which is
distributed with law K. We then recursively assign positions ζu to the individuals in
U . The root is positioned at a given point x ∈ R, that is, ζ∅ = x. Its descendents are
positioned as follows:

ζuL = ζu + log(1− Yu) + cTu and ζuR = ζu + log(Yu) + cTu, u ∈ U .

This gives a model in which each individual lives an exponential time, dies, and (on
average) scatters one child to the left and one to the right.

It will be convenient to introduce a model in which individuals also move contin-
uously, as follows. For u ∈ U , define its birth time au =

∑
u′≺u Tu′ and its death

time bu =
∑
u′�u Tu′ = au + Tu. Its position between those times is then given by

ξu(t) = ζu + c(t−au), for au ≤ t < bu. By another abuse of notation, let us define also
the positions of a ray: for v ∈ V, let ξv(t) = ξu(t), where u ∈ U is the unique individual
with au ≤ t < bu and u ≺ v. We may now see the model as containing individuals
which move to the right at constant rate c, until an exponential clock rings and the
individual dies, scattering offspring to the left.

The model may also be viewed as a stochastic process Y = (Y(t))t≥0, with

Y(t) =
∑
u∈U

δexp(ξu(t))1{au≤t<bu},

taking values in the space N of locally finite point measures and such that Y(0) = δex .
With this perspective, it is an important and useful fact that the process has the
branching property. Loosely speaking, this means that the behaviour of (Y(t+ s))s≥0
is given by collecting the atoms of Y(t) and running from each one an independent
copy of Y; for a precise statement and proof see, for instance, [3, Proposition 2].
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The process Y we have just described is a stochastic model corresponding to the ho-
mogeneous fragmentation equation. In particular, if we define a collection of measures
(µt)t≥0 via

〈µt, f〉 = E
[
〈Y(t), f〉

]
= E

[∑
u∈U

f(exp(ξu(t)))1{au≤t<bu}
]
, f ∈ C∞c ,

then we obtain a solution to (1.2) with α = 0 and L given as in (1.3). This corresponds
to the function κ satisfying, for q ≥ 0,

κ(q) = cq +
∫

[ 1
2 ,1)

[
yq + (1− y)q − 1

]
K(dy) > q

(
c+

∫
[ 1

2 ,1)
log y K(dy)

)
> 0.

Here, the first inequality holds because it holds for the integrands, and the second
inequality is by our assumption about c at the beginning of the section. Also, κ(0) = 1.
Thus, infq≥0 κ(q) > 0, and so the Malthusian hypothesis (4.4), which was an important
assumption in section 4, is not satisfied for our model.

We now give the model corresponding to the self-similar equation. To do this, we
should first introduce the notion of a stopping line. We say that S = (Sv)v∈V is a
stopping line if:

(i) For every v ∈ V, Sv is a stopping time for the natural filtration of ξv;

(ii) If u ∈ U and v, v′ ∈ V such that u ≺ v, v′, then P(Sv = Sv′ | au ≤ Sv < bu) = 1.

Now, for v ∈ V and α ∈ R, let

Tv(s) =
∫ s

0
e−αξv(r) dr,

and denote its inverse by Sv. Then, S(t) = (Sv(t))v∈V is a stopping line for every
t ≥ 0. If u ∈ U is an individual such that, for some v ∈ V with u ≺ v, au ≤ Sv(t) < bu
holds, then we define Su(t) to be equal to Sv(t); by property (ii) of the definition of a
stopping line, this does not depend on the choice of v. We define

Xv(t) = exp(ξv(Sv(t))), v ∈ V, t ≥ 0,

and
X (t) =

∑
u∈U

δexp ξu(Su(t))1{au≤Su(t)<bu}, t ≥ 0, (5.1)

where the sum is over only those u for which Su(t) is defined. The process X is called
the α-self-similar fragmentation process. The stopping-line nature of S means that the
process X retains the branching property; however, it is not clear that it should be
locally finite, and indeed, our main result in this section is that X a.s. does not remain
locally finite for all time:

Proposition 5.1. For any a > 0, there exists some random time S such that there
are infinitely many individuals of X (S) in the compact set [1, 1 + a].
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Proof. We will study rays pk = LkR∞ which follow the left-hand offspring for k
steps, and the right-hand offspring thereafter. Our first remark is that, if we define

τ0(v) = inf{t ≥ 0 : Xv(t) = 0}, v ∈ V,

then we have
τ0 := τ0(L∞) = TL∞(∞) =

∫ ∞
0

e−αξL∞ (t) dt.

Since ξL∞ is a Lévy process with negative mean (by our assumption on c) we obtain
that τ0 <∞ almost surely.

Consequently, for any η > 0 there exists some infinite set C such that, for k ∈ C,
Tpk(bLk) ∈ (τ0 − η, τ0) and Xpk(Tpk(bLk))→ 0 as k →∞. We define

L+
1 (v) = sup{t ≥ 0 : Xv(t) ≤ 1}, v ∈ V,

which is the last passage time of the level 1 by the process Xv; then, for k ∈ C, we
have

L+
1 (pk) = Tpk(bLk) + L̃+

1 (R∞),

where L̃+
1 (R∞) is the last passage time of the level 1 by X̃R∞ , computed for an

independent self-similar fragmentation process started at Xpk(bLk).
We are therefore reduced to studying first passage times of the (−α)-pssMp XR∞

corresponding to a spectrally negative Lévy process ξR∞ started from a level x < 0
with Laplace exponent

ΦR∞(q) = cq +
∫

[ 1
2 ,1)

(yq − 1)K(dy).

We seek t such that, with positive probability (not depending on x), L̃+
1 (XR∞) ≤ t.

The first observation is that Φ′R∞(0+) > 0, which implies that the process XR∞ can
be extended to start at zero; it is then Feller on [0,∞). Furthermore, the pssMp drifts
to +∞ as t → ∞. Hence, we pick ε > 0 and t ≥ 0 such that P0(L+

1 (XR∞) ≤ t) ≥ 2ε.
By the Portmanteau theorem, lim infx→0 Px(L+

1 (XR∞) ≤ t) ≥ 2ε also; and therefore
for x sufficiently close to zero, Px(L+

1 (XR∞) ≤ t) ≥ ε. Applying the Borel-Cantelli
lemma to the paths referred to above, there are then infinitely many k ∈ C such that

L+
1 (pk) ≤ Tpk(bLk) + t ≤ τ0 + t

with probability 1.
We therefore have infinitely many paths whose last passage time of 1 occurs in a

(random) compact interval. In particular, there must exist some finite random time S
such that for every δ > 0, there are infinitely many paths which cross 1 for the last
time in (S − δ, S). Picking δ < a/c ensures that, at time S, all the selected particles
are in [1, 1 + a], which completes the proof.

This result illustrates one example where the Malthusian hypothesis, under we ex-
amined the growth-fragmentation equation, fails, and where the stochastic model X
(whose mean measure could otherwise be expected to give a solution) does not remain
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locally finite. However, since uniqueness generally fails for the self-similar growth-
fragmentation equation, it does not immediately imply that there is no global solution
of (1.2).

The procedure of creating the growth-fragmentation process Y can be carried out
under the general conditions on a, b and K given in the main body of the paper (this
is done in Bertoin [3]) and the self-similar time-change (5.1) can also be applied in
this general context for any α 6= 0 (see [4, Corollary 2].) However, it remains an open
problem to determine necessary and sufficient conditions for the process X to be locally
finite at all times, and to decide when global solutions of (1.2) exist.

6. Branching particle system and many-to-one formulas

In this concluding section, we aim to clarify the connection between our work and
the ‘spine’ or ‘tagged fragment’ approach to branching particle systems and fragmen-
tation processes, with the hope of explaining the source of the solutions obtained in
Theorem 3.1 and Corollaries 4.1 and 4.2. We refer the reader to the survey of Hardy
and Harris [15] for results in the context of branching processes, Bertoin [2, §3.2.2] for
the background on fragmentation processes, and Haas [13] for the use of the tagged
fragment in solving the classical fragmentation equation. For the sake of simplicity, we
focus on the case when the dislocation measure K is finite and the operator L has the
form (1.3).

Let us assume that we can construct a system of branching particles in (0,∞), with the
following dynamics: particles evolve independently of one other, each particle located
at x > 0 grows at rate cxα+1, and a particle located at x > 0 is replaced by two particles
located respectively at xy and x(1− y) at rate xαK(dy). Let Z(t) = (Zi(t))i≥1 denote
the collection of particles in the system at time t ≥ 0, starting at time 0 from a
single particle located at 1. Informally, the verbal description of the dynamics of the
particle system suggests that for every test function f ∈ C∞c (0,∞), the functional
F (z) =

∑
i f(zi) for z = (zi)i≥1 belongs to the domain of the infinitesimal generator

G of the process (Z(t))t≥0, and that

GF (z) =
∑
i≥1

zαi

(
czif

′(zi) +
∫

[1/2,1)
(f(y | zi)− f(zi))K(dy)

)
.

Therefore, if we write µt for the intensity measure of Z(t), i.e.

〈µt, f〉 = E(F (Z(t)) = E
(∑

i

f(Zi(t))
)
,

then Kolmogorov’s forward equation entails that (µt)t≥0 solves the fragmentation
equation (1.2).

The analysis of the system (Z(t))t≥0 can be significantly simplified by identifying a
spine among the particles, and formulating questions about the entire system in terms
of just the spine particle via a many-to-one formula. This proceeds roughly as follows.
Suppose that we can identify a function (t, z) 7→ ϕ(t, z) > 0 such that the process
M(t) =

∑
i≥1 ϕ(t, Zi(t)) is a martingale. We introduce a new probability measure P̃

by means of a martingale change of measure using M , simultaneously identifying one
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of the particles to be the spine; specifically, we identify particle i of Z(t) as the spine
with P̃-probability proportional to ϕ(t, Zi(t)).

At each time 0 ≤ s ≤ t, the spine particle has a unique ancestor, and we define the
random variable W (s) to be the position of this ancestor. We now aim to identify the
law of certain functionals of Z in terms of the law of W . In particular, if we define ρt
to be the law of W (t), we obtain

〈µt, f〉 = E
(∑
i≥1

f(Zi(t))
)

= Ẽ
(
f(W (t))
ϕ(t,W (t))

)
= 〈ρt, f/ϕ(t, ·)〉,

which is known as a many-to-one formula.
The spine method for solving (1.2) can be summarised as follows. We first use the

dynamics of the branching particle system and the effect of the martingale change of
measure to identify the process W . The one-dimensional distributions of W give the
collection of measures (ρt)t≥0, and then the many-to-one formula gives us an explicit
description of (µt)t≥0.

The method we have sketched can be made rigorous in the homogeneous case α = 0,
even in the more general situation when the dislocation measure K is infinite and
fulfills (1.5). More precisely, one can take ϕ(t, z) = exp(−κ(ω)t)zω for any ω ∈ dom κ,
and then the process W (t) is the exponential of a Lévy process with no positive jumps
and Laplace exponent Φω = κ(ω+·)−κ(ω); this is the justification for Remark 3.2. We
stress, however, that the general self-similar case α 6= 0 is far less simple. In particular,
it is not clear whether the branching particle system can indeed be constructed since,
as noted in the previous section, explosion may occur. A fairly general class of growth-
fragmentation processes was introduced recently in [4] by means of a Crump-Mode-
Jagers process; however, although it is expected to be related to growth-fragmentation
equations as described above, so far no many-to-one formula is known to make the
connection rigorous.
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