71 research outputs found

    Mutations in TITF-1 are associated with benign hereditary chorea

    Get PDF
    Benign hereditary chorea (BHC) (MIM 118700) is an autosomal dominant movement disorder. The early onset of symptoms (usually before the age of 5 years) and the observation that in some BHC families the symptoms tend to decrease in adulthood suggests that the disorder results from a developmental disturbance of the brain. In contrast to Huntington disease (MIM 143100), BHC is non-progressive and patients have normal or slightly below normal intelligence. There is considerable inter- and intrafamilial variability, including dysarthria, axial dystonia and gait disturbances. Previously, we identified a locus for BHC on chromosome 14 and subsequently identified additional independent families linked to the same locus. Recombination analysis of all chromosome 14-linked families resulted initially in a reduction of the critical interval for the BHC gene to 8.4 cM between markers D14S49 and D14S278. More detailed analysis of the critical region in a small BHC family revealed a de novo deletion of 1.2 Mb harboring the TITF-1 gene, a homeodomain-containing transcription factor essential for the organogenesis of the lung, thyroid and the basal ganglia. Here we report evidence that mutations in TITF-1 are associated with BHC

    A case series of familial ARID1B variants illustrating variable expression and suggestions to update the ACMG criteria

    Get PDF
    ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses

    Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome

    Get PDF
    Purpose: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. Methods: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. Results: Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. Conclusion: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease

    Variants in CUL4B are Associated with Cerebral Malformations

    Get PDF
    Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B

    Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome.

    Get PDF
    Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder

    Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome

    Get PDF
    Purpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    TRIO-Related Intellectual Disability

    No full text

    TRIO-related neurodevelopmental disorder

    No full text
    Clinical characteristics.TRIO-related neurodevelopmental disorder (TRIO-NDD) is characterized by two phenotypes: TRIO-NDD due to gain-of-function variants and TRIO-NDD due to loss-of-function variants.TRIO-NDD due to gain-of-function variants within the spectrin repeat domain is characterized by moderate-to-severe developmental delay, intellectual disability, macrocephaly (or relative macrocephaly), neurobehavioral manifestations (poor attention, stereotypies, obsessive-compulsive behavior, aggressive behavior, and autism spectrum disorder), and early feeding difficulties with poor weight gain and growth deficiency. Seizures, constipation, scoliosis, dental abnormalities, and cardiac anomalies are also reported.TRIO-NDD due to loss-of-function variants is characterized by mild-to-moderate developmental delay and intellectual disability, microcephaly, neurobehavioral manifestations (poor attention, aggressive behavior, autism spectrum disorder, obsessive-compulsive traits, and stereotypies), early feeding difficulties with poor weight gain, dental abnormalities, and digit anomalies, including 2-3 toe syndactyly in some individuals. Seizures, constipation, scoliosis, and cardiac anomalies are also reported.Diagnosis/testing.The diagnosis of TRIO-NDD is established in a proband with a heterozygous TRIO pathogenic variant identified by molecular genetic testing.Management.Treatment of manifestations: Treatment is symptomatic and includes routine management of developmental delays, intellectual disability, neurobehavioral manifestations, seizures, feeding difficulties, gastroesophageal reflux, constipation, spine abnormalities, and dental abnormalities, as well as for rarely occurring cardiovascular anomalies and recurrent infections.Surveillance: At each visit, monitor developmental progress and educational needs; behavioral assessments for attention, aggression, and/or social communication difficulties; growth and feeding assessments to ensure optimal nutritional status; assessment for seizures, constipation, spine deformities, and frequent infections; regular dental evaluations.Genetic counseling.TRIO-NDD is an autosomal dominant disorder. The majority of individuals diagnosed with TRIO-NDD have the disorder as a result of a de novo pathogenic variant; approximately 15% have inherited the TRIO pathogenic variant from an affected parent. TRIO gain-of-function missense variants (affecting the spectrin repeat domain) and TRIO loss-of-function missense variants (within the GEFD1 domain) are typically de novo. TRIO loss-of-function truncating variants may occur de novo or be inherited from an affected parent. Each child of an individual with TRIO-NDD has a 50% chance of inheriting the TRIO pathogenic variant. Once the TRIO pathogenic variant has been identified in an affected family member, prenatal and preimplantation genetic testing are possible
    corecore