189 research outputs found
Matching NLO parton shower matrix element with exact phase space: case of W -> l nu (gamma) and gamma^* -> pi^+pi^-(gamma)
The PHOTOS Monte Carlo is often used for simulation of QED effects in decay
of intermediate particles and resonances. Momenta are generated in such a way
that samples of events cover the whole bremsstrahlung phase space. With the
help of selection cuts, experimental acceptance can be then taken into account.
The program is based on an exact multiphoton phase space. Crude matrix element
is obtained by iteration of a universal multidimensional kernel. It ensures
exact distribution in the soft photon region. Algorithm is compatible with
exclusive exponentiation. To evaluate the program's precision, it is necessary
to control the kernel with the help of perturbative results. If available,
kernel is constructed from the exact first order matrix element. This ensures
that all terms necessary for non-leading logarithms are taken into account. In
the present paper we will focus on the W -> l nu and gamma^* -> pi^+ pi^-
decays. The Born level cross sections for both processes approach zero in some
points of the phase space. A process dependent compensating weight is
constructed to incorporate the exact matrix element, but is recommended for use
in tests only. In the hard photon region, where scalar QED is not expected to
be reliable, the compensating weight for gamma^* decay can be large. With
respect to the total rate, the effect remains at the permille level. It is
nonetheless of interest. The terms leading to the effect are analogous to some
terms appearing in QCD. The present paper can be understood either as a
contribution to discussion on how to match two collinear emission chains
resulting from charged sources in a way compatible with the exact and complete
phase space, exclusive exponentiation and the first order matrix element of QED
(scalar QED), or as the practical study of predictions for accelerator
experiments.Comment: 24 page
A study protocol to investigate the relationship between dietary fibre intake and fermentation, colon cell turnover, global protein acetylation and early carcinogenesis: the FACT study
Background: A number of studies, notably EPIC, have shown a descrease in colorectal cancer risk associated with increased fibre consumption. Whilst the underlying mechanisms are likely to be multifactorial, production of the short-chain fatty-acid butyrate fro butyratye is frequently cited as a major potential contributor to the effect. Butyrate inhibits histone deacetylases, which work on a wide range of proteins over and above histones. We therefore hypothesized that alterations in the acetylated proteome may be associated with a cancer risk phenotype in the colorectal mucosa, and that such alterations are candidate biomarkers for effectiveness of fibre interventions in cancer prevention.
Methods an design: There are two principal arms to this study: (i) a cross-sectional study (FACT OBS) of 90 subjects recruited from gastroenterology clinics and; (ii) an intervention trial in 40 subjects with an 8 week high fibre intervention. In both studies the principal goal is to investigate a link between fibre intake, SCFA production and global protein acetylation. The primary measure is level of faecal butyrate, which it is hoped will be elevated by moving subjects to a high fibre diet. Fibre intakes will be estimated in the cross-sectional group using the EPIC Food Frequency Questionnaire. Subsidiary measures of the effect of butyrate on colon mucosal function and precancerous phenotype will include measures of apoptosis, apoptotic regulators cell cycle and cell division.
Discussion: This study will provide a new level of mechanistic data on alterations in the functional proteome in response to the colon microenvironment which may underwrite the observed cancer preventive effect of fibre. The study may yield novel candidate biomarkers of fibre fermentation and colon mucosal function
Spatial Distribution of Factor Xa, Thrombin, and Fibrin(ogen) on Thrombi at Venous Shear
The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca(2+) signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl(3). Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers)
Pod indehiscence is a domestication and aridity resilience trait in common bean.
Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication
Report of an ad-hoc international task force to develop an expert-based opinion on early and short-term rehabilitative interventions (after the acute hospital setting) in covid-19 survivors
No abstract available.publishe
Environmental NGOs at a crossroads?
Article published as introduction to the Special Issue 'Environmental Politics at a crossroads', edited by Nathalie Berny & Christopher Rootes, Environmental Politics vol.27.no.6, November 201
Initial characteristics of RbcX proteins from Arabidopsis thaliana
Form I of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is composed of eight large (RbcL) and eight small (RbcS) subunits. Assembly of these subunits into a functional holoenzyme requires the assistance of additional assembly factors. One such factor is RbcX, which has been demonstrated to act as a chaperone in the assembly of most cyanobacterial Rubisco complexes expressed in heterologous system established in Escherichia coli cells. Analysis of Arabidopsis thaliana genomic sequence revealed the presence of two genes encoding putative homologues of cyanobacterial RbcX protein: AtRbcX1 (At4G04330) and AtRbcX2 (At5G19855). In general, both RbcX homologues seem to have the same function which is chaperone activity during Rubisco biogenesis. However, detailed analysis revealed slight differences between them. AtRbcX2 is localized in the stromal fraction of chloroplasts whereas AtRbcX1 was found in the insoluble fraction corresponding with thylakoid membranes. Search for putative “partners” using mass spectrometry analysis suggested that apart from binding to RbcL, AtRbcX1 may also interact with β subunit of chloroplast ATP synthase. Quantitative RT-PCR analysis of AtRbcX1 and AtRbcX2 expression under various stress conditions indicated that AtRbcX2 is transcribed at a relatively stable level, while the transcription level of AtRbcX1 varies significantly. In addition, we present the attempts to elucidate the secondary structure of AtRbcX proteins using CD spectroscopy. Presented results are the first known approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants
Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants
Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins
Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology
Imbalance of neuronal proteostasis associated with misfolding and aggregation of Tau protein is a common neurodegenerative feature in Alzheimer's disease (AD) and other Tauopathies. Consistent with suggestions that lifetime stress may be an important AD precipitating factor, we previously reported that environmental stress and high glucocorticoid (GC) levels induce accumulation of aggregated Tau; however, the molecular mechanisms for such process remain unclear. Herein, we monitor a novel interplay between RNA-binding proteins (RBPs) and autophagic machinery in the underlying mechanisms through which chronic stress and high GC levels impact on Tau proteostasis precipitating Tau aggregation. Using molecular, pharmacological and behavioral analysis, we demonstrate that chronic stress and high GC trigger mTOR-dependent inhibition of autophagy, leading to accumulation of Tau aggregates and cell death in P301L-Tau expressing mice and cells. In parallel, we found that environmental stress and GC disturb cellular homeostasis and trigger the insoluble accumulation of different RBPs, such as PABP, G3BP1, TIA-1, and FUS, shown to form stress granules (SGs) and Tau aggregation. Interestingly, an mTOR-driven pharmacological stimulation of autophagy attenuates the GC-driven accumulation of Tau and SG-related proteins as well as the related cell death, suggesting a critical interface between autophagy and the response of the SG-related protein in the neurodegenerative potential of chronic stress and GC. These studies provide novel insights into the RNA-protein intracellular signaling regulating the precipitating role of environmental stress and GC on Tau-driven brain pathology.We would like to thank Professor Juergen Gotz, (University of Queensland, Australia) for the kind offer of eGFP-P301LTau SH-SY5Y cells and Dr. Bruno Almeida for his technical assistance. J.M.S. was granted with a PhD fellowship (SRFH/BD/88932/2012) by Portuguese Foundation for Science & Technology (FCT); I.S. is holder of FCT Investigator grants (IF/01799/2013), C.D. is a recipient of PhD fellowship of PHDoc program and co-tutelle PhD student of UMinho-UPMC universities. This work was funded by FCT research grants "PTDC/SAU-NMC/113934/2009" (I.S.), the Portuguese North Regional Operational Program (ON. 2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Project Estrategico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). In addition, this work was partly funded by Canon Foundation in Europe. This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145FEDER-007038. This study was also supported to BW by grants from NIH (AG050471, NS089544, and ES020395), the BrightFocus Foundation, the Alzheimer Association and the Cure Alzeimer Foundation. Human brain tissue was generously provided by the National Institute of Aging Boston University AD Center (P30AG13846).info:eu-repo/semantics/publishedVersio
Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly
Stress granules (SGs) are mRNA-protein aggregates induced during stress, which accumulate in many neurodegenerative diseases. Previously, the autophagy-lysosome pathway and valosin-containing protein (VCP), key players of the protein quality control (PQC), were shown to regulate SG degradation. This is consistent with the idea that PQC may survey and/or assist SG dynamics. However, despite these observations, it is currently unknown whether the PQC actively participates in SG assembly. Here, we describe that inhibition of autophagy, lysosomes and VCP causes defective SG formation after induction. Silencing the VCP co-factors UFD1L and PLAA, which degrade defective ribosomal products (DRIPs) and 60S ribosomes, also impaired SG assembly. Intriguingly, DRIPs and 60S, which are released from disassembling polysomes and are normally excluded from SGs, were significantly retained within SGs in cells with impaired autophagy, lysosome or VCP function. Our results suggest that deregulated autophagy, lysosomal or VCP activities, which occur in several neurodegenerative (VCP-associated) diseases, may alter SG morphology and composition
- …