74 research outputs found

    Anaplasma phagocytophilum remodels its host cell-derived vacuole into a protective niche by redecorating the vacuolar membrane with select Rab GTPases and bacterial proteins

    Get PDF
    Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause the emerging tick-transmitted disease, human granulocytic anaplasmosis (HGA). Following entry, the pathogen replicates within a host cell-derived vacuole that fails to mature along the endocytic pathway, does not acidify, and does not fuse with lysosomes. Selective fusogenicity is prototypical of many vacuole-adapted pathogens and has been attributed, at least in part, to pathogen modification of the vacuolar inclusion membrane and/or to selective recruitment or exclusion of host trafficking regulators. As a result, the A. phagocytophilum-occupied vacuolar membrane (AVM) provides a unique interface to study the host-pathogen interactions critical to A. phagocytophilum intracellular survival. Diverse vacuole-adapted pathogens; including Chlamydia, Legionella, and Salmonella; selectively recruit host Rab GTPases to their vacuolar membranes to establish replicative permissive niches within their host cells. Rab GTPases coordinate many aspects of endocytic and exocytic cargo delivery. We determined that the A. phagocytophilum-occupied vacuole (ApV) selectively recruits a subset of fluorescently-tagged Rabs that are predominantly associated with recycling endosomes. Another emerging theme among vacuole-adapted pathogens is the ability to hijack ubiquitin machinery to modulate host cellular processes. Mono- and polyubiquitination differentially dictate the subcellular localization, activity, and fate of protein substrates. Monoubiquitination directs membrane traffic from the plasma membrane to the endosome and has been shown to promote autophagy. We show that monoubiquitinated proteins decorate the AVM during infection of promyelocytic HL-60 cells, endothelial RF/6A cells, and to a lesser extent, embryonic tick ISE6 cells. Importantly, tetracycline treatment concomitantly promotes loss of the recycling endosome-associated GFP-Rabs and ubiquitinated proteins and acquisition of the late endosomal marker, Rab7, and lysosomal marker, LAMP-1, implicating bacterial-derived proteins in the ApV\u27s altered fusogenicity. Therefore, we rationalized that A. phagocytophilum-encoded proteins that associate with the AVM may establish interactions with the host cell that are important for intracellular survival. By focusing on A. phagocytophilum proteins that are induced during host infection, we identified the first two bacterial-encoded proteins -- APH_1387 and APH_0032 -- that modify the AVM. Although functional studies are hindered by the lack of a system to genetically manipulate Anaplasma, the pathobiological roles of APH_1387 and APH_0032 are likely unique, as both proteins exhibit very little or no homology with any previously described protein. APH_1387 and APH_0032 are present at the cytoplasmic face of the AVM, therefore they likely interact with host proteins. We demonstrate that ectopic expression of APH_1387 and APH_0032 inhibits the ApV development in A. phagocytophilum infected cells. The results presented in this dissertation contribute to our understanding of how A. phagocytophilum modifies the vacuolar membrane in which it resides to establish a safe haven and evade lysosomal degradation

    The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies

    Get PDF
    Background Characterizing microbial communities via next-generation sequencing is subject to a number of pitfalls involving sample processing. The observed community composition can be a severe distortion of the quantities of bacteria actually present in the microbiome, hampering analysis and threatening the validity of conclusions from metagenomic studies. We introduce an experimental protocol using mock communities for quantifying and characterizing bias introduced in the sample processing pipeline. We used 80 bacterial mock communities comprised of prescribed proportions of cells from seven vaginally-relevant bacterial strains to assess the bias introduced in the sample processing pipeline. We created two additional sets of 80 mock communities by mixing prescribed quantities of DNA and PCR product to quantify the relative contribution to bias of (1) DNA extraction, (2) PCR amplification, and (3) sequencing and taxonomic classification for particular choices of protocols for each step. We developed models to predict the “true” composition of environmental samples based on the observed proportions, and applied them to a set of clinical vaginal samples from a single subject during four visits. Results We observed that using different DNA extraction kits can produce dramatically different results but bias is introduced regardless of the choice of kit. We observed error rates from bias of over 85% in some samples, while technical variation was very low at less than 5% for most bacteria. The effects of DNA extraction and PCR amplification for our protocols were much larger than those due to sequencing and classification. The processing steps affected different bacteria in different ways, resulting in amplified and suppressed observed proportions of a community. When predictive models were applied to clinical samples from a subject, the predicted microbiome profiles were better reflections of the physiology and diagnosis of the subject at the visits than the observed community compositions. Conclusions Bias in 16S studies due to DNA extraction and PCR amplification will continue to require attention despite further advances in sequencing technology. Analysis of mock communities can help assess bias and facilitate the interpretation of results from environmental samples

    Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence

    Get PDF
    Abstract Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids

    CD164 identifies CD4+ T cells highly expressing genes associated with malignancy in Sézary syndrome: the Sézary signature genes, FCRL3, Tox, and miR-214

    Get PDF
    Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), is associated with a significantly shorter life expectancy compared to skin-restricted mycosis fungoides. Early diagnosis of SS is, therefore, key to achieving enhanced therapeutic responses. However, the lack of a biomarker(s) highly specific for malignant CD4+ T cells in SS patients has been a serious obstacle in making an early diagnosis. We recently demonstrated the high expression of CD164 on CD4+ T cells from Sézary syndrome patients with a wide range of circulating tumor burdens. To further characterize CD164 as a potential biomarker for malignant CD4+ T cells, CD164+ and CD164-CD4+ T cells isolated from patients with high-circulating tumor burden, B2 stage, and medium/low tumor burden, B1-B0 stage, were assessed for the expression of genes reported to differentiate SS from normal controls, and associated with malignancy and poor prognosis. The expression of Sézary signature genes: T plastin, GATA-3, along with FCRL3, Tox, and miR-214, was significantly higher, whereas STAT-4 was lower, in CD164+ compared with CD164-CD4+ T cells. While Tox was highly expressed in both B2 and B1-B0 patients, the expression of Sézary signature genes, FCRL3, and miR-214 was associated predominantly with advanced B2 disease. High expression of CD164 mRNA and protein was also detected in skin from CTCL patients. CD164 was co-expressed with KIR3DL2 on circulating CD4+ T cells from high tumor burden SS patients, further providing strong support for CD164 as a disease relevant surface biomarker

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    FUNCTION OF THE LYSOLIPID TRANSPORTER Mfsd2a IN EYE AND BRAIN

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (DUKE

    Examining Policy Strategies for Electrifying Transportation in ASEAN: A STEELUP Framework Evaluation

    No full text
    With the recent emphasis on carbon neutrality following COP27, many countries prioritise shifting to electric mobility as a crucial strategy to combat carbon emissions. A significant portion of this comes from transportation. Notably, countries such as Norway, China, and the United States have taken the lead in the electric vehicle (EV) industry, driven by their effective e-mobility policies. In contrast, the 10 member nations of the Association of Southeast Asian Nations (ASEAN) are still in the early stages of adopting this emerging trend. This paper conducts a comprehensive evaluation of the current e-mobility policies within the ASEAN region, employing the STEELUP (Sociocultural and demographic, Technological, Economic, Environmental, Legislative, Urban design, and Political) framework to provide a holistic perspective on the e-mobility landscape in the ASEAN countries. By critically assessing the implementation of e-mobility policies in each country, this paper aims to identify key gaps and challenges that hinder the acceleration of EV adoption in the region. The findings from the STEELUP framework, coupled with a thorough analysis of the current conditions in ASEAN, provide crucial insights for governments and policymakers to act upon. Through evidence-based recommendations, this study concludes by suggesting effective strategies to expedite the uptake of EVs in the ASEAN region
    corecore